
Engineering Resilient Collaborative Edge-enabled IoT

Roberto Casadei, Mirko Viroli

Department of Computer Science and Engineering
University of Bologna, Cesena, Italy

Christos Tsigkanos, Schahram Dustdar

Distributed Systems Group
TU Wien, Vienna, Austria

Abstract—Novel scenarios like IoT and smart cities promote
a vision of computational ecosystems whereby heterogeneous
collectives of humans, devices and computing infrastructure
interact to provide various services. There, autonomous agents
with different capabilities are expected to cooperate towards
global goals in dependable ways. This is challenging, as deploy-
ments are within unknown, changing and loosely connected en-
vironments characterized by lack of centralized control, where
components may come and go, or disruption may be caused by
failures. Key issues include (i) how to leverage, functionally and
non-functionally, forms of opportunistic computing and locality
that often underlie IoT scenarios; (ii) how to design and operate
large-scale, resilient ecosystems through suitable assumptions,
decentralized control, and adaptive mechanisms; and (iii) how
to capture and enact “global” behaviors and properties, when
the system consists of heterogeneous, autonomous entities. In
this paper, we propose a model for resilient, collaborative edge-
enabled IoT that leverages spatial locality, opportunistic agents,
and coordinator nodes at the edge. The engineering approach
is declarative and configurable, and works by dynamically
dividing the environment into collaboration areas coordinated
by edge devices. We provide an implementation as a collec-
tive, self-organizing workflow based on Aggregate Computing,
provide evaluation by means of simulation, and finally discuss
properties and general applicability of the approach.

Keywords-self-organization; situated problem solving; decen-
tralized coordination; collective intelligence; edge computing.

I. INTRODUCTION

The recent evolution towards an increasingly integrated

world has at its basis novel types of pervasive and dis-

tributed systems fostered by technologies and paradigms

such as the Internet of Things (IoT), inducing collectives

composed of humans, heterogeneous devices and computing

infrastructure. The complex software-intensive systems that

emerge are dynamic and composed of autonomous elements

with different capabilities, addressing societal challenges

within smart cities, health care, energy, and industry. As

computational systems permeate more and more critical

aspects of human activity, their dependability is a highly-

sought quality. Consider, e.g., scenarios like surveillance or

urban monitoring/maintenance. A wide array of challenges

arise when deployments are within unknown, changing and

loosely connected environments characterized by an absence

of centralized coordination and global system state. There,

one needs system requirements to be satisfied reliably, in

spite of different components (humans or devices) coming

and going, or disruption caused by failures. Namely, the

system should exhibit resilience, intended as “persistence

and the ability to absorb change and disturbance” [19].

Key to achieving system resilience is decentralization of

control facilities, so that operation towards design goals

continues unhindered in the face of disruption. We argue that

computing entities architecturally located near the network

edge—hence, close to the IoT end-devices [30] that make

up the heterogeneous collective system—should have a

prominent role in coordinating system behavior and adaptive

distribution. The edge is a first-class entity in our approach,

supporting control agents in (i) observing and evaluating

context and (ii) inducing the appropriate course of action

for system entities under their control.

Our approach lies within engineering of collaborative

systems that operate in a spatial environment, which may be

composed of heterogeneous components typically deployed

in diverse devices cooperating towards a global design goal.

We shall present a methodology and technical framework

for engineering resilient collaborative systems by leveraging

Aggregate Computing (AC [6]), which we instantiate within

the edge-enabled IoT. The paper’s contributions are three-

fold:

1) we address the broad application domain of situated

problem solving within systematic engineering of het-

erogeneous human-edge-IoT systems, which can be in-

stantiated for a variety of scenarios;

2) we expose a set of abstractions and devise a methodology

for engineering collaborative systems based on separa-

tion of concerns, which the system designer can readily

utilize by injecting domain-specific know-how;

3) we define a core technical implementation of our model

based on Aggregate Computing, a formal programming

paradigm able to compositionally capture adaptive be-

havior of agent collectives in a global way, with minimal

assumptions on reliability of devices and connectivity.

The rest of the paper is structured as follows. Section II

gives a high level overview of the engineering aspects of

our approach. Methodology and key design concerns are

described in Section III, while our problem-solving coordi-

nation solution based on Aggregate Computing is presented

in Section IV. Section V provides an assessment of resilience

aspects achieved, with a case study showing applicability.

36

2019 IEEE International Conference on Services Computing (SCC)

2474-2473/19/$31.00 ©2019 IEEE
DOI 10.1109/SCC.2019.00019



System Concern

Sensing

R
es

ilie
nt

 C
ol

la
bo

ra
tiv

e 
E

dg
e-

E
na

bl
ed

 Io
T

E
dge

G
oals

IoT D
evices - E

nvironm
ent

Device

Sensor

Edge

System Concern

Actuation

System Concern

Communication

…

System Concern

Coordination

Aggregate Computing Constructs

Global System Specification

Device

Human

Design Time

Runtime

Robot

Edge

Figure 1: The proposed engineering approach for collab-

orative edge-enabled systems is configurable w.r.t. a set of

design and runtime concerns (as discussed in Section III-B).

Related work is considered in Section VI, and Section VII

concludes the paper.

II. OVERVIEW: ENGINEERING COLLABORATIVE

PROBLEM SOLVING IN EDGE-ENABLED SYSTEMS

The approach we propose for engineering resilient col-

laborative edge-enabled systems is shown in Figure 1 and

outlined below.

Modern IoT applications are of varying types and com-

plexities, with multiple software components deployed in

diverse domains and contexts. IoT systems supporting dis-

tributed applications consist of heterogeneous components

(light-border boxes in the figure) —robots, low-powered

devices, or humans make up the collective system, which

is deployed in constantly changing, unpredictable, and often

unknown environments. However, those do not live in iso-

lation, but must interact with each other to collaboratively

solve problems as dictated by the requirements of the

collective system at hand (such components are depicted

as interconnected with dash lines). To facilitate the runtime

operation of the resulting system, then, IoT components,

situated in spatial localities solving problems, rely on edge

nodes for coordination (continuous lines to edge devices).

The complexity that arises in designing effective systems

on top of this architecture is addressed in our approach by

isolating major IoT system concerns (dark-border boxes at

the runtime level): (i) sensing, responsible for perception of

the environment, (ii) actuation, responsible for control ac-

tions operating upon the environment, (iii) communication,

whereby system components interact and exchange informa-

tion among one another, and (iv) coordination, responsible

for decentralized organization and control of components in

order to ensure progression towards the system goal. Such

concerns define a boundary between runtime and design time

levels: at design time, they become constructs of a global

system specification language, that allows the designers

to abstract away low-level details of system components

and their interactions, focusing on describing declarative

domain-specific behavior instead. Overall, our approach is

grounded on formal foundations providing various behav-

ioral guarantees, e.g., ensuring the IoT system can au-

tonomously react to changes in various environment contexts

and resiliently cope with unforeseen failures.

Motivating Scenario. As a running example of a hybrid

problem-solving IoT system, consider a wide smart man-

ufacturing facility populated with machinery, mobile robots

and humans. Due to the facility’s operation, toxic waste may

be spilled in unknown places within the floor. Sensors—

or roaming human workers—may detect waste, which due

to health hazards must be cleaned by specialized robots.

Cleaning robots move to the toxic waste spill area and clean

it, upon instruction of various edge-level system control

entities responsible for decision-making. Since the system

goal is critical—toxic waste is dangerous—the system must

be resilient in fulfilling its goal and failure of components

must not lead to violation of the system goal. Since the toxic

spillage problem typically emerges in unknown places, it is

to be tackled dynamically by cooperation between different

entities (i.e., detected through specialized sensors or human

workers, and solved by dispatching cleaning robots) while

overall control and coordination must take place in a way

that is resilient to failure (e.g., faults in single devices or in

the control infrastructure must not lead to global failure).

III. MODEL AND METHODOLOGY

Here, we present the model of our solution and describe

how it can be employed from a designer’s perspective.

A. Situated Problem Solving System Model

Our goal is to build a distributed coordination system

for large-scale, situated, collaborative problem detection and

problem solving. The generalized model we consider is as

follows. A system is situated within an environment, where

problems (or issues) arise. The environment is inhabited by a

(large) set of heterogeneous agents (a.k.a. workers) making

up the IoT system, which roam inside it and interact oppor-

tunistically. Workers have sensors and actuators, to perceive

the environment for potential issues and perform repairing

actions, as well as specific skills (a.k.a. capabilities)—i.e., an

ontology of pragmatic or epistemic actions potentially useful

for the considered problems. Specifically, the key entities we

consider for collaborative problem solving are:

• Environment. An IoT system’s spatial operational envi-

ronment that needs to be monitored—e.g., the physical

area of the smart manufacturing facility.

37



• Problems. Within the system’s environment, problems
(or issues) may arise that need to be solved. Those

are situated (i.e., localized in space and time); e.g., a

toxic waste spill occurs in a specific area within the

manufacturing facility at some specific time point.

• Workers. These are active, situated agents (e.g., IoT

devices, humans, robots) that inhabit the environment

and are part of the system. They which opportunistically

wander or profitably visit a set of loci of interest to

perform tasks. Workers may be heterogeneous, exposing

different capabilities w.r.t. detecting or solving problems.

For the toxic waste scenario, things or humans enjoy

problem detection capabilities (i.e., sensing toxins), while

specialized robots are responsible for solving problems

(i.e., actuating—cleaning toxic waste). When a worker

detects a problem, it cannot autonomously decide how

to deal with it, and must report the issue to another entity

responsible for decision-making.

• Coordinators. Resource-rich computational entities, de-

ployed on the edge, are responsible for coordinating

workers. A coordinator takes decisions about issues it has

been notified about, which result in assignment of tasks
to workers under its supervision. Workers which detect

problems notify their coordinator, who subsequently al-

locates appropriate tasks to worker(s) with the necessary

capabilities. Coordinators themselves may differ in their

decision-making ability or computational power.

The system entities above are not static: they interact

towards the global system goal. When a worker detects a

problem, either the worker is allowed to directly handle

it, or not. The former case is of course rather simplistic

and assumes no need for coordination for solving problems;

the worker may solve the problem by itself if it owns

needed capabilities, or may delegate tasks to other workers.

However, in the latter case, which is the one we focus on in

this paper, the worker cannot autonomously take decisions

about how to deal with the problem, and must report the

problem to another entity responsible for decision-making,

the coordinator. Coordinators are responsible for determin-

ing the assignment (a.k.a. allocation) of problems/tasks to

workers. The level of sophistication of such decision-making

carried out by the coordinator is of course left to the system

designer to implement in a domain-specific manner. The

coordinator might elaborate a (partial) plan, hence assigning

(partial) sequences of actions to workers, or it might just

delegate the issue to the workers, assuming they have the

knowledge to do the planning themselves—in this paper, we

mainly consider the latter option. Additionally, a coordinator

is expected to play a role throughout the problem solving

process, i.e., by also supervising or monitoring the activity

of workers and providing any needed help. Accordingly,

workers engaged in a task can provide feedback to the coor-

dinator in order to report progress, request further resources,

or provide any information useful for the specific and overall

workflow.

A smart choice of coordinators is generally desired, where

“smart” depends on various factors; typically, this means

choosing nodes that both guarantee (i) good and uniform

spatial coverage of the environment, and (ii) balanced cover-

age of workers—which might be unevenly distributed across

space. We support multiple coordinators, each of which is

responsible for a certain portion of the environment (called

an area). Decision-making is decentralized, as coordinators

control sets of workers independently.

However, components in a system might fail, as is es-

pecially the case in the highly distributed, volatile IoT-

based systems we target. Assuming workers are gener-

ally available, failure of coordinators must be tackled, as

workers cannot solve problems by themselves and their

coordination is critical for achieving the system goal. To this

end, we support dynamic selection of coordinators in case

of failure: candidate coordinators are system components

which (in varying degrees) are able to perform coordination

duties (e.g., as being resourceful or trusted enough). Out

of candidate coordinators, some leaders are elected (active

coordinators), responsible for a set of workers; those not

elected (i.e., inactive) are considered “backup coordinators”.

Failure of an elected, active coordinator leads to dynamic,

automatic selection of a backup one; thus, the system is

resilient to their failure.

B. Capturing Problem-Solving System Concerns

The model of Section III-A defines key abstractions, and

relationships among them, essential to the problem solving

conception. According to Figure 1, the system designer can

take the problem solving workflow as a functional black box:

she just needs to provide inputs/configuration and refine the

abstractions with domain-specific details. Methodologically,

the following needs to be defined.

Problems Model. A taxonomy of the problems has to be

defined, together with associated properties and metadata for

use, e.g., in allocation decision-making. In the toxic waste

removal scenario, a spillage problem can be modeled, e.g.,

by specifying the location in the environment, the kind of

substance, and the rough amount of material to be disposed.

Agents Model. The agents as well form a taxonomy. In

the toxic waste removal scenario, we may have human

or robot detectors, and three (possibly overlapping) solver

roles: waste collector, disposer, and cleaner. So, sensors

and actuators have to be defined and provided: e.g., the

waste collector may be equipped with a camera, a pump,

and mechanical arm. Agents have capabilities—crucial for

problem allocation; e.g., waste collectors and disposers may

advertise their ability to carry on light or heavy loads,

or their resistance to hot or acid substances. Finally, we

only assume that an agent is able to communicate , at the

38



Elected 
Coordinator 

(Edge)

Detector

Detector/Solver

Solver

…

Coordinator Area

Backup
Coordinator

(Edge)

Downstreaming/
Upstreaming

Upstreaming/
Downstreaming

Profile
Capabilities

Problems
Assignments

Elected 
Coordinator

Coordinator Area

Backup
Coordinator

Detector

Solver

…
……

…

Feedbacks
Problems

Figure 2: Problem Solving Ecosystem.

minimum, with other nearby agents—the concrete modality

being a design decision.

Solving Processes. The allocation strategy used by the

coordinator to assign tasks/problems to solvers has to

be designed, weighing various variables (e.g., required,

preferred, and optional skills, solver-to-problem distance,

urgency etc.) in an ad-hoc manner, and possibly leveraging

heuristics and ML techniques for optimization purposes.

Also, the solving process for each problem type has to be

designed in terms of a micro-level workflow, expressed

e.g., via finite-state automata. This includes identifying

phases and states of the activity, pre- and post-conditions

preventing or enabling progress, and corresponding feedback

messages for the coordinator. E.g., the spillage problem

solving workflow can be captured as going through states

{start , collected , disposed , cleaned , disposed&cleaned};

through feedback, the coordinator can mobilize cleaners

and disposers once the collected stage is reached.

System and Environment Design. From the definition of

sensors and actuators follows the model of the environment

as perceived by an agent. Moreover, other elements of the

environment and overall system can be specified, including

number of agents; number of edge servers (candidate coordi-

nators); number and dimension of areas; and infrastructural

elements such as wireless access points for communication.

IV. COORDINATING PROBLEM SOLVING AT THE EDGE

In this section, we introduce the engineering paradigm

we adopt, and describe the core of our solution, i.e., the

aggregate specification of a heterogeneous “collective sys-

tem” carrying out the collaborative problem solving process

in edge-centric IoT—as modeled in Section III.

A. Background: Aggregate Computing

Aggregate Computing (AC [6]) is a paradigm for en-

gineering collective adaptive systems. Its key idea is to

describe the system-level behavior of an entire aggregate
of agents (a.k.a. collective, or ensemble) through a single

global specification (i.e., an aggregate program) that is

locally interpreted by each constituent agent according to

the aggregate semantics and the agent’s local context, which

is given by the portion of environment that it can observe

(through sensors) and messages received from neighbor
agents. Collective behavior and properties are obtained

through patterns of computation and interaction whereby

individual activity affects the corresponding neighborhood

and in turn global portions of the system, through a sort

of “controlled emergence”. Then, adaptivity is achieved

by “continuously” interpreting the aggregate program in

order to re-assess individual contexts (by sampling the

environment and observing activity in the neighborhood) and

provide up-to-date responses seeking global coherence, in

turn affecting the rest of the system.

The AC model roots in few ideas. Structurally, an ag-

gregate system is a set of agents organized into a (dynamic)

logical network based on a neighboring relationship. Behav-

iorally, devices repeatedly compute an aggregate program

at a certain configurable, possibly non-homogeneous fre-

quency; i.e., computation evolves at asynchronous rounds of

execution spaced out by “sleeping” periods. Interactionally,

communication is only possible with neighbors.

By a programming viewpoint, AC is compositional and

declarative. Aggregate programs can be defined by function-
ally composing aggregate-level building blocks that abstract

from various low-level details, such as the actual topology of

the system or the concrete unfolding of execution. Critically,

this abstraction allows the AC platform/middleware to drive

aggregate systems in a flexible and optimized way [39].

AC is supported on the JVM by SCAFI [12], a Scala

library that includes a runtime, internal-DSL and actor-based

middleware [13].

The formal framework that actualizes AC is based on

the (computational) field notion and the corresponding Field
Calculus (FC) [4]. A field is a distributed data structure that

maps agents to computational values. A field computation

is a function from input fields to output fields. For instance,

a gradient computation that measures the minimum hop-

by-hop distance from any agent to “source” agents can

be modeled at the aggregate-level as a function from a

boolean field (true for the source agents and false for

others) to a double field of distances. Such functional

orientation, “preserved” by the semantics of field primitives,

is instrumental for the compositionality of the approach. The

field primitives cover the natural lifting of local values and

operations to fields, application of a field of functions (also

splitting the domain of computation into branches), stateful

evolution of fields, and interaction with neighbors. Note that

field compositions, within some formalized conditions, have

been proved to enjoy interesting properties, and to preserve

such properties across composition; a notable example is

self-stabilization [37], whereby a system, in the absence

of further perturbations, is guaranteed to eventually reach

39



a stable output (or fixpoint). A full technical presentation of

AC and FC is beyond the scope of this paper; a complete

account on the matter can be found in [4].

In this paper, we explore the fitness of AC for IoT and

Edge Computing. We argue the AC paradigm helps to ad-

dress prominent issues in such scenarios – e.g., complex de-

centralized, situated coordination, self-organizing behavior,

and flexible deployment – as it provides a straightforward

model to represent situated entities interacting in a spatial

locality, and to horizontally scale, from few up to large

numbers of agents, while keeping the flexibility of mapping

the logical system to diverse physical architectures in the

edge-fog-cloud continuum [39].

B. Aggregate Specification of the Collaborative Workflow

We refine the model described in Section III as per

Figure 2 and accordingly implement the situated, collabo-

rative problem solving workflow through the specification

of Figure 31, expressed in the SCAFI DSL. Such a speci-

fication should be intended as a script to be fully executed

asynchronously and in a repeated fashion by each agent, and

whose execution carries on in a “coordinated” way by means

of the SCAFI platform. This program describes the workflow

by a global perspective through a continuous process mix-

ing coordination and computation. Concretely, an aggregate

program is an AggregateProgram subclass implementing

the main method with the desired field expression meant to

be collectively executed in an aggregate fashion, i.e., contin-

uously in asynchronous rounds of computations intertwined

with neighboring communication acts.

The logic of ProblemSolvingEcosystem is straightfor-

ward. First, the system determines the coordinators. Operator

S(grain) is an well-known aggregate building block that

computes a boolean field holding true for elected leaders,

ensuring they are at a mean distance grain between each

other; this has the effect of partitioning the network into

“areas” controlled a single leader. Function priorityS
is a variant of S which takes into account a numeric

priorityField to prioritize leader election—in general,

there might be some preferences or constraints for eligibility

of agents for coordination (e.g., based on computational

capabilities or trust metrics).

Based on the leader set, a gradient field potential is

maintained to support data propagation from coordinators

to agents in the corresponding area (downstreaming), and

vice versa (upstreaming). Such a potential field is built only

considering (by partitioning the computation domain through

branch) agents available for this data distribution process,

as indicated by boolean field infoPropagationNet; note

1For space reasons, we do not introduce the Scala syntax and every
bound name in the program. The full source is available at the repository
provided in Section V. Refer to [12] for further details on the field-
based functions included in the SCAFI standard library or straightforward
extensions thereof.

that “leaf” agents would still be able to send and receive

data (but won’t participate in the dissemination itself).

As the spatial structure for hop-by-hop data transmis-

sions is set up (potential field), it is used to collect,
from workers to coordinators, three pieces of data: (i) new

issues that have been identified (problems); (ii) profiles

of workers (solvers), e.g., as descriptions in terms of

availability or advertised skills; and (iii) data about on-

going problem solving by workers (feedbacks), which

may include resource requests or event occurrences such

as confirmation of task acceptance or completion. Operation

collectSets is for merging locally emitted data sets along

a spanning tree from leaves (workers) to roots (coordi-

nators); it derives from the aggregate collection operator

C(potential,acc,v,none), where merging function acc

is the set union, v is the set to be collected, and none

(emitted from nodes with no parent) is the empty set.

So, the coordinators use such an upstream data

flow to decide new assignments (a.k.a. allocations) of

problem instances to solvers, which are then propa-

gated downstream via a collective broadcast activity.

Such function leverages the generic aggregate operator

G(potential,acc,field), using for accumulation the

identity function—the value to be broadcast is taken from

field where potential is zero (i.e., in source points), and

preserved along the transmission path.

Finally, each device takes the downstream field tasks

of allocations for execution. This data structure contains all

the allocations for an area, so each device needs to consult

the map for its own problem assignments. Note that devices

“outside” infoPropagationNet will receive the allocation

map, but will not contribute to the gossip process.

C. Resilience through Consensus and Coordination

From a dynamical perspective, the system is based on

three self-healing, ongoing processes: (1) adaptive decen-

tralized consensus for election of active coordinators; (2)
adaptive creation of areas and corresponding data pathways

between leaders and workers; and (3) adaptive upstreaming

and downstreaming of data between leaders and workers.

Such aggregate processes take time to build and take time

to adjust to change, depending on the entity of perturbations.

There is a direct, I/O dependency among them: as the output

of (1) is the input of (2), and the output of (2) is the input of

(3). A change in the set of active coordinators will result in

a different shape of areas and, consequentially, different data

pathways. Mobility of workers also creates perturbations to

the gradient computation producing the potential field, which

in turn affects the spanning tree used for data collection.

Computational fields are not snapshots: they are con-

tinuously evolving device-to-value mappings that might be

somewhat incoherent during their transient phase, before

they stabilize or reach the desired property. For instance, in

spatial leader election, leaders are progressively elected to

40



class ProblemSolvingEcosystem extends AggregateProgram with ProblemAPI {
override def main = {

val coordinators = priorityS(grain, priorityField)
val potential = branch(infoPropagationNet){gradient(coordinators)}{+∞}
val problems = collectSets(downTo=potential, problemOccurrences)
val solvers = collectSets(downTo=potential, solverProfile)
val feedbacks = collectSets(downTo=potential, feedbackField).groupBy(_.problem)
val assignments = branch(coordinators){
allocate(coordinators,solvers,problems,feedbacks) }{ Set() }

val tasks = broadcast(potential, assignments)
branch(workers){ execute(tasks) }{ () }

} }

Figure 3: Excerpt of the aggregate program modeling situated problem solving as a decentralized workflow. Gray, underlined

symbols denote fields of parameters (e.g., grain) or built-in/sensor values (e.g., solverProfile). Black, bold symbols

denote application-specific functionality. Red and purple symbols denote core and library constructs, respectively.

ensure a uniform coverage of space, but it takes time before

such property is guaranteed. Different aggregate computing

algorithms and techniques can be used to promote particular

dynamical properties of system processes: for instance, for

collecting information, the potential field should be built

with a gradient algorithm that focuses more on the shape

of the output field rather than on a precise estimation

of distances. An in-depth discussion of these algorithms,

which is subject of intense research [38], is beyond our

scope; also, the reader should be aware that there is there

is ongoing research on analysis and synthesis of effective

implementations for aggregate operators [38], [20], [3], [21].

Resilience naturally emerges from the adaptiveness of the

three aforementioned processes: if a leader fails, another

will be elected; if the leader formation changes (i.e., if

the potential field loses a source and gains a new one), it

will self-heal (depending on the gradient implementation,

this might be more or less fast [3]); if the potential field

changes, the streaming of data will flow along a different

path. However, the point is not only eventual consistency, but

also what properties are preserved during the transient phase.

These are usually application-specific and might include,

e.g., consistency guarantees. For instance, if the formation

of areas is changing, it might happen that a certain problem

reaches more than one coordinator. If that is a problem,

precautions have to be taken, e.g., by explicitly denoting the

target coordinator in the messages. The failure of workers,

or a worker losing ability to communicate with its neighbors

(a kind of local failure) is not a problem as long as this does

not result in network partitioning (which would prevent the

non-local propagation of information). Indeed, if a worker

fails, then it will stop streaming its status to the coordinator,

which will be aware of that and adjust its assignments.

V. EVALUATION

To evaluate the proposed approach, we illustrate a case

study of urban infrastructural maintenance in smart cities and

set up an experimental framework with simulations based

on the SCAFI-ALCHEMIST platform [12]2. Our evaluation’s

focus is on functional correctness, resilience, and on the

actual automatic triggering of adaptivity mechanisms3.

A. Case Study: Infrastructural Maintenance in a Smart City

As a case study, consider a scenario where autonomous

agents (e.g., robots) and human workers are collectively

employed for maintaining a city’s infrastructure. As parts

of the city’s common facilities may break or degrade,

issues must be quickly identified and dealt with appropriate

actions. This entails the notification and resolution of issues

by the active agents operating within it. Non-autonomous

agents might be useful as well: cameras and diffused plain

sensors may provide data to smart software components

which are capable of inferring semantics and contributing

to the system. The issues arising in the city’s facilities are

situated, i.e., they have an identity and location in space-

time. Agents may use electromagnetic sensors, smoke/gas

sensors, cameras, or even accept inputs by citizens to detect

potential problems. Naturally, agents who identify issues

might not be able to solve those by themselves: they may

not have required skills or enough resources to deal with

the problem, and hence they have to report it to a “control

center”. Note that issues might be dealt with, in principle,

in a completely decentralized way: the agent who finds

an issue may locally broadcast requests for specialists or

resources, without involving any central entity, and the

closest matching agents would respond.

Such a problem setting fits our approach particularly well.

We advocate keeping the system quite decentralized, by

splitting it into areas of space of reasonable size, while

2SCAFI is available at: https://github.com/scafi/scafi. The source code
of simulations as well as instructions for running the experiments and
generating the plots are available at the repository https://github.com/
metaphori/engineering-collaborative-edge-iot.

3Detailed quantitative analyses, such as how delays in work allocation
vary with the grain of areas, will be considered in extensions of this work.

41



also introducing centralization points (the coordinators)

to provide more sophisticated/optimized coordination and

decision-making. Coordinators should be placed in strate-

gic/central places of the city, and as they may have to

optimize decisions, they should be resourceful machines—

e.g., a cloudlet [31] or an edge computer. We assume

security countermeasures are taken for the system to be safe,

as well as that potential coordinators outnumber required

coordinators (e.g., for redundancy) and have legal ability to

carry on their tasks. A smart coordinator might choose to

allocate problems to workers based on elements like problem

severity, skills of workers, or distance from workers to

problems; especially when heterogeneous teams are needed

to deal with complex issues, such an allocation decision

is not an easy one to be left to a self-organizing team of

workers.

B. Experimental Setup and Simulation Framework

For our experiments, we employ the aggregate specifi-

cation of Figure 3, enriched with simulation-specific code

for parametrization and data gathering. The experimental

setting and simulation scenario (depicted in Figure 4) are as

follows. A number of devices are supposed to be deployed

in the city center of Vienna: 300 lightweight devices and

10 edge servers. Two devices can communicate if they

are within 50 meters range. All these devices, including

edge servers, are assumed to run the AC middleware as

a service and the aggregate application described by the

program in Figure 3 on top. They are assumed to “fire” (i.e.,

to run computation rounds and send corresponding data to

neighbors) asynchronously but at similar frequencies.

We run simulations considering either “smart” coordina-

tors (which use an advanced allocation strategy of prob-

lems to workers—abstracting from the concrete one) or

“naive” coordinators, as indicated by a smartness boolean

parameter. We measure, along time: (i) the total number of

problems detected by all workers, (ii) the problems streamed

to the coordinator but still unhandled, (iii) the problems

both allocated to and accepted by at least one worker (i.e.,

those successfully assigned), and (iv), the total number of

problems handled to completion. We observe the system

response by injecting problem occurrences and failure as

described in Figure 5. Our experiments are implemented as

SCAFI simulations [12] and available online.

C. Experimental Results

The experimental results are reported in Figure 5. Our

evaluation goals concern a qualitative assessment of cor-

rectness, adaptivity and resilience of the system. Assump-

tions and explanations of how these are achieved are in

Section IV-C.

Correctness. Evidence comes from the fact that all the

problems found have been managed: this means that both

the notification of problems, the task allocation, and the

Figure 4: Snapshot of the simulation scenario. Large, blue

nodes represent edge devices eligible for election as coordi-

nators; large red-filled squares denote leaders. Small circles

represent workers; their filling color reflects the potential

field (warmer colors when closer to coordinators). Square

contours (e.g., bottom-left corner) denote nodes currently

working on a problem. Gray edges depict neighboring links.

feedback process work well. Moreover, notice how the

injection of a blackout, disconnecting edge servers from

the network (between t2 = 300 to t3 = 310), provides a

delay but does not affect the outcome. Finally, differences

emerge between coordinators that use an advanced allocation

strategy and naive ones: overall, one can observe the increase

of performance when smart allocation decisions are taken.

Adaptivity. When the active coordinators fail, the system

self-organizes to elect new coordinators. This results into an

adaptation of the structures supporting the data flows.

Resilience. Resilience naturally emerges: despite coordina-

tion failures, group formation changes or general faults in the

control infrastructure, the system does not fail: it correctly

responds to failures through appropriate coordination reac-

tions. Notice the gentle degradation of performance caused

by failure and the restoration of conventional efficiency.

D. Discussion

Functional Perspective. Elements about the functional cor-

rectness of the solution are provided in Section IV-C and

empirically verified in this section. The solution schema

in Section IV is the core of the approach but may not

satisfy all the functional properties needed by a real-world

application. For instance, the designer needs to decide what

happens when an area lacks resources for specific problems

or coordinators do not receive timely feedback.

Non-Functional Perspective. A) Bandwidth and storage.
The amount of data that needs to be propagated depends

42



Figure 5: Aggregated results of multiple simulation runs, with “naive” (left) and “smart” (right) coordinators. For each case,

50 simulation instances are executed for different random seeds, and the mean values are taken for the measured quantities.

From t0 = 150 to t1 = 600 time units, a significant number of “problems” are randomly generated, so that they can be

detected by worker devices. Moreover, from t2 = 300 to t3 = 310, a blackout is injected, with the effect of temporarily

detaching the edge servers from the network.

on the number of nodes in each area, the amount of

problem solving activity, and amount of data required by the

coordinators (concerning problem reporting, solver profiles,

and feedbacks). Storage is needed because data propagation

through aggregate operators G and C requires keeping state.

The specification in Figure 3 partially deals with this by us-

ing a subset of nodes for the epidemic distribution of data in

each area. B) Latency. In the simplest case, the time between

problem identification and resolution is TC +TA+TG+TS

where TC is the time needed to collect problem data to the

coordinator, TA is the time needed by the coordinator to

make its allocation decision, TG is the time needed to trans-

mit the allocation decision, and TS is the time needed by the

worker to solve the problem. In particular, TC and TG are

proportional to grain and depend on the firing frequency

of nodes and the propagation delay, whereas TA and TS

are application-specific. While it is useful to be aware of

these performance aspects, it must be noticed that a variety

of optimizations can be applied to the execution process

globally sustaining an aggregate application [39]: messages

can be compressed (or include only deltas), round frequency

can be dynamically adjusted according to desired QoS,

communications might be optimized through localisation in

edge access points—what is possible ultimately depends on

assumptions, configuration, and available infrastructure.

Usability. A description of what the designer must define

and what is provided by our approach is given in Section II

and Section III-B. For the large part of application design,

the designer can focus on the business logic, filling in

the gaps with specifications of problems, agents, solution

workflows, coordination, and environment. However, knowl-

edge about AC and its toolchain is required for deployment

and implementation of extensions with respect to the basic

workflow.

On Real-World Deployment. Generally, for a real-world

deployment, the physical devices that are going to be part of

the aggregate system need to host and run two main software

artifacts: (i) the AC middleware [39], which provides an

interface to physical capabilities (i.e., sensors, actuators, and

communication interfaces) as well as logical services to ap-

plications and (ii) the particular aggregate application, which

consists of an aggregate program (as the one in Figure 3)

and configuration metadata, and leverages services provided

by the middleware. Edge provisioning and code deployment

patterns [28] might be adopted to distribute the aggregate

logic as a containerized application. Security and privacy

are also relevant concerns: Attacks such as the forgery

of communication data can compromise aggregate algo-

rithms [10] (think about the effect of a counterfeit potential

field). So, public-key cryptography might be used to ensure

that (i) original aggregate applications are executed, e.g.,

using signed containers, and (ii) aggregate-level coordination

data is not manipulated. In [27], the authors propose to use

blockchain technology to transparently support security at

the level of the aggregate computing middleware.

Generality and Extensions. The specification of Figure 3

represents a general solution schema that can be special-

ized for different situated problem solving applications,

whose key design dimensions are explained in Section III-B.

Straightforward examples are those in smart cities, such as

infrastructural maintenance (Section V-A), but include gen-

erally any scenario involving situated monitoring, decision-

43



making, and action (e.g., firefighting, car crash management,

etc.). Depending on the specific scenario, extensions may

mix “centralized” and “localized” decision-making, mix

“opportunistic” and “planned” monitoring, allow collabo-

ration globally or among adjacent areas, or balance the

distribution of skills/resources among areas according to

certain metrics (e.g., occurrences of problems, or criticality).

VI. RELATED WORK

In this paper, we address large-scale, situated problem-

solving coordination in Edge/IoT scenarios through a spa-

tial, self-organizing approach with minimal assumptions on

reliability of devices and connectivity (neighbor-based com-

munication is sufficient for system operation). Other works

addressing similar problems—e.g., in multi-agent systems

(MAS) research [24]—typically adopt different focus and

assumptions. We abstract individual planning of workers

and any task scheduling optimization by orchestrators and

rather focus on coordination in a dynamic edge environment.

Hierarchical MAS frameworks with control loops such as

[26] (which is tailored for smart cities) usually lack com-

positional programming abstractions and do not leverage a

global or spatial stance.

In this paper, we address large-scale, situated problem-

solving coordination in Edge/IoT scenarios through a spa-

tial, self-organizing approach with minimal assumptions on

reliability of devices and connectivity. It should be noticed

that implementation in AC is natural but not essential for the

proposed solution—the crucial part being its dynamics. Still,

a novelty of this paper also lies in the adoption of AC tech-

niques in this new scenario, differing from typical uses [38]

such as rescue operations, distributed event recognition [13],

swarm sensing [7], and crowd management in safety-critical

scenarios [6] and opportunistic IoT [11]. Indeed, these works

do not explicitly consider the edge layer, and address specific

scenarios rather than classes of applications.

Resilience concepts have been largely investigated in

fields ranging from critical and dependable systems [33],

CPSs [16], [2], and networks [29] and cloud comput-

ing [18]. Engineering support similarly ranges from the-

oretical foundations [34], operations and process [8] and

formally backed system validation [17], and fault manage-

ment [5], [14]. Within robotics, resilience in the form of

convergence in the presence of byzantine faults [9] has been

investigated, however assuming no direct communication.

Architectural aspects of WSNs—in particular interaction and

connectivity—are treated in [25]. Cloud-IoT couplings have

been investigated for automatic management, analysis and

control of IoT systems [35], pertinent to resilience [15].

Such hierarchical IoT multi-tier architectural models are

used for gathering data to perform analytics on the cloud,

where techniques for resilience are deployed at different

tiers [36]. In contrast, we assume systems that are edge-

enabled and decentralized. Also, our model is generic and

applicable to a wide array of edge-enabled systems within

smart environments [1]. We note the current absence of

usable approaches towards programming abstractions for

resilience tailored for contemporary IoT systems.

On the platform side, an outline of architectural styles and

deployment tactics for aggregate systems is given in [39],

showing how AC can exploit IT infrastructures comprising

edge/fog/cloud layers. This is related, e.g., to works on elas-

tic [22] and osmotic computing [23], where ecosystems of

people, processes, and things are dynamically managed con-

sidering both infrastructural and application requirements.

Our point is that elasticity in edge/cloud environments has

to be enabled by declarative programming models.

Works in the context of on collaborative systems also

share some focus with this paper. E.g., in [32], a model for

hybrid collaborative adaptive systems is proposed in which

the designer specifies an environment where collectives—

i.e., persistent or transient teams of peers (humans and

machines)—are involved in collective tasks. W.r.t. our ap-

proach, such model is more articulated, human-centered and

focuses on orchestration of complex collaborative tasks in

small-scale social computing scenarios.

VII. CONCLUSION AND FUTURE WORK

We proposed resilient situated problem-solving coordina-

tion in edge-enabled IoT settings, providing a general model

that defines key abstractions and workflow relationships

which can be extended and specialized with application-

and domain-specific aspects. We further provided an AC

specification implementing the workflow in a resilient, self-

organizing way, demonstrated its correctness and discussed

its properties. We stress that adopting AC is convenient but

not a requirement of the approach.

Regarding future work, we would like to extend the

quantitative analysis of our approach as well as apply it to

more realistic scenarios. Moreover, we would like to focus in

more detail on the heterogeneity of teams, and better explore

the role of humans therein, e.g., to study what is the impact

of additional unpredictability on the dynamics of collective

workflows, and how to seamlessly integrate humans in a

self-organizing cyber-physical aggregate.

REFERENCES

[1] Abreu, D.P., Velasquez, K., Curado, M., Monteiro, E.: A
resilient internet of things architecture for smart cities. Annals
of Telecommunications 72(1-2), 19–30 (2017)

[2] Arlat, J., Diaz, M., Kaâniche, M.: Towards resilient cyber-
physical systems: The adream project. In: Design & Technol-
ogy of Integrated Systems In Nanoscale Era, 2014 9th Int.
Conf. On. pp. 1–5. IEEE (2014)

[3] Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compo-
sitional blocks for optimal self-healing gradients. In: 11th
IEEE Int. Conf.on Self-Adaptive and Self-Organizing Systems,
SASO. pp. 91–100. IEEE Computer Society (2017)

44



[4] Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A
higher-order calculus of computational fields. ACM Transac-
tions on Computational Logic 20(1), 5:1–5:55 (2019)

[5] Avresky, D., Arlat, J., Laprie, J.C., Crouzet, Y.: Fault injection
for formal testing of fault tolerance. IEEE Transactions on
Reliability 45(3), 443–455 (1996)

[6] Beal, J., Pianini, D., Viroli, M.: Aggregate programming for
the Internet of Things. IEEE Computer 48(9) (2015)

[7] Beal, J., Usbeck, K., Loyall, J., Rowe, M., Metzler, J.: Adaptive
opportunistic airborne sensor sharing. ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 13(1), 6 (2018)

[8] Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability model-
ing and analysis of software systems specified with uml. ACM
Computing Surveys (CSUR) 45(1), 2 (2012)

[9] Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal
byzantine-resilient convergence in uni-dimensional robot net-
works. Theoretical Computer Science 411(34-36), 3154–3168
(2010)

[10] Casadei, R., Aldini, A., Viroli, M.: Towards attack-resistant
aggregate computing using trust mechanisms. Science of Com-
puter Programming 167, 114–137 (2018)

[11] Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C.,
Viroli, M.: Modelling and simulation of opportunistic IoT ser-
vices with aggregate computing. Future Generation Computer
Systems 91, 252–262 (2019)

[12] Casadei, R., Pianini, D., Viroli, M.: Simulating large-scale
aggregate MASs with Alchemist and Scala. In: FedCSIS,
Proceedings of. pp. 1495–1504. IEEE (2016)

[13] Casadei, R., Viroli, M.: Programming actor-based collective
adaptive systems. In: Programming with Actors, LNCS, vol.
10789, pp. 94–122. Springer (2018)

[14] Cristian, F.: Understanding fault-tolerant distributed systems.
Communications of the ACM 34(2), 56–78 (1991)

[15] Delic, K.A.: On resilience of IoT systems: The internet of
things (ubiquity symposium). Ubiquity 2016(Feb), 1 (2016)

[16] Denker, G., Dutt, N., Mehrotra, S., Stehr, M.O., Talcott, C.,
Venkatasubramanian, N.: Resilient dependable cyber-physical
systems: a middleware perspective. Journal of Internet Services
and Applications 3(1), 41–49 (2012)

[17] Ghosh, R., Kim, D., Trivedi, K.S.: System resiliency quantifi-
cation using non-state-space and state-space analytic models.
Reliability Engineering & System Safety 116, 109–125 (2013)

[18] Ghosh, R., Longo, F., Naik, V.K., Trivedi, K.S.: Quantifying
resiliency of iaas cloud. In: Reliable Distributed Systems, 29th
Symposium on. pp. 343–347. IEEE (2010)

[19] Holling, C.S.: Resilience and stability of ecological systems.
Annual review of ecology and systematics 4(1), 1–23 (1973)

[20] Mo, Y., Beal, J., Dasgupta, S.: Error in self-stabilizing
spanning-tree estimation of collective state. In: FAS*W, Pro-
ceedings of. pp. 1–6. IEEE (2017)

[21] Mo, Y., Beal, J., Dasgupta, S.: An aggregate computing ap-
proach to self-stabilizing leader election. In: FAS*W, Proceed-
ings of. pp. 112–117. IEEE (2018)

[22] Moldovan, D., Copil, G., Dustdar, S.: Elastic systems: Towards
cyber-physical ecosystems of people, processes, and things.
Computer Standards & Interfaces 57, 76–82 (2018)

[23] Nardelli, M., Nastic, S., Dustdar, S., Villari, M., Ranjan, R.:
Osmotic flow: Osmotic computing + IoT workflow. IEEE
Cloud Computing 4(2), 68–75 (2017)

[24] Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and
cooperation in networked multi-agent systems. Proceedings of
the IEEE 95(1), 215–233 (2007)

[25] Oteafy, S., Hassanein, H.: Resilient iot architectures over
dynamic sensor networks with adaptive components. IEEE
Internet of Things Journal 4(2), 474–483 (2017)

[26] Patrascu, M., Dragoicea, M., Ion, A.: Emergent intelligence
in agents: A scalable architecture for smart cities. In: System
Theory, Control and Computing (ICSTCC), 2014 18th Inter-
national Conference. pp. 181–186. IEEE (2014)

[27] Pianini, D., Ciatto, G., Casadei, R., Mariani, S., Viroli, M.,
Omicini, A.: Transparent protection of aggregate computations
from byzantine behaviours via blockchain. In: Proceedings of
the 4th EAI International Conference on Smart Objects and
Technologies for Social Good. pp. 271–276. ACM (2018)

[28] Qanbari, S., Pezeshki, S., Raisi, R., Mahdizadeh, S.,
Rahimzadeh, R., et al.: IoT design patterns: computational
constructs to design, build and engineer edge applications. In:
1st Int. Conf. on Internet-of-Things Design and Implementation
(IoTDI). pp. 277–282. IEEE (2016)

[29] Rak, J.: Principles of communication networks resilience. In:
Resilient Routing in Communication Networks, pp. 11–43.
Springer (2015)

[30] Ren, J., Guo, H., Xu, C., Zhang, Y.: Serving at the edge: A
scalable IoT architecture based on transparent computing. IEEE
Network 31(5), 96–105 (2017)

[31] Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case
for vm-based cloudlets in mobile computing. IEEE pervasive
Computing 8(4) (2009)

[32] Scekic, O., Schiavinotto, T., Videnov, S., Rovatsos, M., Truong,
H.L., Miorandi, D., Dustdar, S.: A programming model for
hybrid collaborative adaptive systems. IEEE Transactions on
Emerging Topics in Computing (2017)

[33] Siewiorek, D., Swarz, R.: Reliable Computer Systems: Design
and Evaluatuion. Digital Press (2017)

[34] Stoicescu, M., Fabre, J.C., Roy, M.: Architecting resilient
computing systems: overall approach and open issues. In:
International Workshop on Software Engineering for Resilient
Systems. pp. 48–62. Springer (2011)

[35] Suciu, G., Vulpe, A., Halunga, S., Fratu, O., Todoran, G.,
Suciu, V.: Smart cities built on resilient cloud computing and
secure internet of things. In: Control Systems & Computer
Science (CSCS), Int. Conf. on. pp. 513–518. IEEE (2013)

[36] Uddin, M.Y.S., Nelson, A., Benson, K., Wang, G., Zhu, Q.,
et al.: The scale2 multi-network architecture for IoT-based
resilient communities. In: Smart Computing (SMARTCOMP),
Int. Conf. on. pp. 1–8. IEEE (2016)

[37] Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.:
Engineering resilient collective adaptive systems by self-
stabilisation. ACM Transactions on Modeling and Computer
Simulation 28(2), 16:1–16:28 (2018)

[38] Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R.,
Pianini, D.: From field-based coordination to aggregate com-
puting. In: Int. Conf. on Coordination Languages and Models
(COORDINATION), pp. 252–279. Springer (2018)

[39] Viroli, M., Casadei, R., Pianini, D.: On execution platforms
for large-scale aggregate computing. In: Proceedings of the
2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct. pp. 1321–1326. ACM (2016)

45


