
Updating Service-based Software Systems in
Air-Gapped Environments?

Oleksandr Shabelnyk1,2, Pantelis A. Frangoudis2, Schahram Dustdar2, and
Christos Tsigkanos2

1Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty
Organization, Austria

2Distributed Systems Group, TU Wien, Austria

Abstract. Contemporary component-based systems often manifest them-
selves as service-based architectures, where a central activity is manage-
ment of their software updates. However, stringent security constraints
in mission-critical settings often impose compulsory network isolation
among systems, also known as air-gap; a prevalent choice in different sec-
tors including private, public or governmental organizations. This raises
several issues involving updates, stemming from the fact that controlling
the update procedure of a distributed service-based system centrally and
remotely is precluded by network isolation policies. A dedicated soft-
ware architecture is thus required, where key themes are dependability
of the update process, interoperability with respect to the software sup-
ported and auditability regarding update actions previously performed.
We adopt an architectural viewpoint and present a technical framework
for updating service-based systems in air-gapped environments. We de-
scribe the particularities of the domain characterized by network isolation
and provide suitable notations for service versions, whereupon satisfia-
bility is leveraged for dependency resolution; those are situated within an
overall architectural design. Finally, we evaluate the proposed framework
over a realistic case study of an international organization, and assess the
performance of the dependency resolution procedures for practical prob-
lem sizes.

Keywords: Software Updates · Air-gapped Environments · Service-based
Architectures
Disclaimer: The views expressed herein are those of the authors and do
not necessarily reflect the views of the CTBTO Preparatory Commission.

1 Introduction

Contemporary software architectures reflect decades-long software engineering
research and practice, where separation of concerns with respect to the wide-
ranging functionality available throughout a software system is strongly empha-
sized. This leads to systems formed via composition of loosely coupled indepen-
dent software components, which are also often distributed. The trend towards

? Research partially supported by Austrian Science Foundation (FWF) project M
2778-N “EDENSPACE”.



2 Shabelnyk et al.

breaking down software into increasingly smaller pieces introduces numerous
advantages, however, it increases overall system complexity, including over its
maintenance and managed evolution. This component-based view has culmi-
nated in service-orientation, where service-oriented architectures (SOA) have
seen wide applicability.

Software systems however are not static, but rather evolve, undergoing con-
tinual change, with software maintenance thus constituting a major activity [1].
This is evident also in service-oriented component-based architectures, where
software is designed, developed and maintained by different teams in often agile
processes. As such, software updates are a central theme, something exacer-
bated in mission-critical settings in highly regulated, mission critical environ-
ments where stringent security constraints impose compulsory network isolation
among distributed systems, also known as air-gap. Even though network isola-
tion does not counter all security concerns [2–4], such a design is a prevalent
choice in different sectors involving critical systems, be it within private, public
or governmental organizations. Air-gap isolation generally imposes challenges in
the lifecycle management of service-based software systems, the lack of constant
availability of resources being a major issue, and is in contrast with the spirit
of modern DevOps practices [5]. In working environments where an air-gap is
in place, the lack of Internet connectivity also has a negative impact on produc-
tivity [6]. Challenges arise especially when there is a need to initially provision
and later update distributed component-based software systems – an update of a
software component may introduce breaking changes to other dependents. Natu-
rally, software updates, their modelling and dependency resolution are problems
that have been treated by the community extensively and in several forms [7–10].

However, updating air-gapped systems raises several issues from a software
architecture perspective, especially given the overall mission-critical setting; those
include: (i) the configuration of components produced to update the system
should be verifiably correct, since there is significant cost-to-repair for incor-
rect updates, (ii) service-based architectures entail containerized services, with
support of different runtime environments, and (iii) update actions should be
recorded in a traceable manner, in order to support auditability and regula-
tory compliance. As such, we adopt an architectural viewpoint and present a
technical framework for updating distributed software systems in air-gapped en-
vironments. Our main contributions are as follows:

– We detail the domain characterized by network isolation and identify re-
quirements, update workflow and modelling notations for service versions;

– We leverage satisfiability for dependency resolution, providing alternative
strategies with correctness guarantees and address the trade-off between
their execution time and resolution quality;

– We describe an architectural design to instrument updates for air-gapped
service-based systems, which we implement end-to-end, and finally

– We evaluate the proposed framework over a realistic case of an air-gapped
update elicited from the Comprehensive Nuclear-Test-Ban Treaty Organi-



Updating Air-Gapped Service-Based Systems 3

zation (CTBTO1). We further assess the performance of the dependency
resolution procedures for practical problem sizes.

The rest of this paper is structured as follows. Sec. 2 gives an overview of the
proposed approach along with the challenges brought by the air-gapped setting.
Sec. 3 describes an architecture and workflow instrumenting air-gapped updates,
while Sec. 4 elaborates on characteristic dependency resolution strategies. Sec. 5
provides an assessment over a case study along with a performance evaluation.
Related work is considered in Sec. 6, and Sec. 7 concludes the paper.

2 Updating Service-Based Air-Gapped Systems

An air-gap is a security measure employed to ensure that a computer system
is physically network-isolated from others, such as the Internet or other local
area networks. The air-gap design may manifest in computers having no net-
work interfaces to others, while residing in a physically isolated location. This
is because a network – often used to update software – represents a security
vulnerability or regulatory violation. To transfer data (or programs) between
the network-connected world and air-gapped systems, one typically uses a re-
movable physical medium such as a hard drive, while access is regulated and
controlled [11]. The key concept is that an air-gapped system can generally be
regarded as closed in terms of data and software, and unable to be accessed from
the outside world. However, this has implications regarding contemporary sys-
tems, which may need to be upgraded as part of software maintenance activities.
Although existing package management solutions can be theoretically used (e.g.,
by storing an entire repository on a physical medium), this may be inefficient
and not readily applicable in a service-based setting; repositories can be sizable
and snapshotting to removable media may be impractical or even infeasible.

Figure 1 illustrates a birds-eye view of the domain and proposed approach.
On the problem domain (left part of Fig. 1) a series of air-gapped systems
host software services, each having some version. Those comprise the service
version configuration state of each air-gapped system, which is assumed to be
known or adequately communicated. Software development takes place off-site,
and services may need to be updated. Services – as software components – have
dependencies, specified at development time. To perform an update on an air-
gapped system (right part of Fig. 1), the process entails resolution of service
dependencies per air-gapped system, building a valid service configuration taking
into account its current configuration state, and pulling of appropriate artifacts
(such as containers) from development repositories, storing them in a removable
physical medium. Subsequently, the air-gapped system is visited, the service
configuration is verified against the local state and the update is performed;
services are then provisioned accordingly based on execution environments.

1 CTBTO Preparatory Commission, www.ctbto.org.



4 Shabelnyk et al.

copy

1

Artifacts
Repository

Resolution
Module

2

System 1

System n

Service 1

Service n

resolve dependencies

Air-Gapped Data Exchange

Problem Domain

Version 1
Version n

System 1

System n

Service 1

Service n

Version 1
Version n

de
pe

nd
s

relies on

Ai
r G

ap

SP
U

N
IE

update

Resolution
Module

verify dependencies locally

Solution Domain

Resolve & Prepare Visit & Update
(multiple)

verifies & matches

Isolated
System

Update
Model

re
pr

es
en

ts

SP
U

N
IE

Fig. 1: Updating service-based air-gapped systems – Overview.

3 Architecture for Instrumenting Air-Gapped Updates

As evident from Fig. 1, updating service-based air-gapped systems requires a
dedicated software architecture, capable of coping with the particularities of the
domain, workflow, and execution environments. To this end, this section first out-
lines design requirements a software architecture for instrumenting air-gapped
updates should fulfil, before presenting its materialization and accompanying
update workflow.

3.1 Design Requirements

As air-gapped systems are typically employed in mission-critical settings, key
themes regarding the design of a software architecture concern dependability
of the update process performed, interoperability with respect to the software
supported and auditability regarding update actions performed. Specifically:

DR1 Dependability & Verifiability: The configuration of components produced in
order to update a system should be verifiably correct. Given the criticality
of the domain and the network isolation, there is significant cost-to-repair
incorrect updates, something exacerbated by the fact that a physical visit to
the air-gapped site is required to apply the update. Moreover, the air-gapped
system should be able to verify locally that the update configuration to be
applied is correct before installing (recall Fig. 1), as rollbacks induce further
cost.

DR2 Interoperability & Extensibility: Since in service-based systems, software is
designed, developed and maintained by different teams in often agile pro-
cesses, loose coupling is desired, in practice realized by pluggable (and in-
terchangeable) components. Functional blocks should manifest themselves
as containerized services, different runtime environments of which may be



Updating Air-Gapped Service-Based Systems 5

supported (e.g., Docker). Components should expose interfaces, in order to
be agnostic of underlying programming languages and other internals.

DR3 Traceability & Auditability: User and system access and update actions
should be recorded in a traceable manner, in order to both aid the develop-
ment and deployment lifecycle and to ensure regulatory compliance. This is
key to support required forensic processes for external regulators or inspec-
tors of the update workflow, that are typically in place in mission-critical
administrative domains, and is a fundamental requirement in our particular
case study which we present in Sec. 5.1.

3.2 Functional Components

Figure 2 illustrates functional components of the architecture we advocate for
updating air-gapped systems. The architecture is itself service-based, in order to
support interoperability as per DR2; components address separation of concerns
such that their development can be supported by different teams or processes,
something which is the typical case in large organizations involved with mission-
critical systems. The Gateway provides a Web UI and is responsible for routing
(authenticated) users’ requests to the right service, making use of a Service
Registry which records and discovers available services available to consist an
update. Additionally, a collection of air-gapped systems is maintained along with
their current service version configuration – this amounts to book-keeping of their
remote state, and may be instrumented in case-specific ways which are out of
the scope of the present paper. Thereupon, the Dependency Resolver service is
responsible for resolving version dependencies according to DR1, yielding update
configurations that are verifiably correct, to be shipped to target air-gapped
systems. Upon the physical visit, the update configuration is validated against
the service configuration already present in the system.

The rightmost part of Fig. 2 illustrates functional components outside the
core architecture, namely interaction with different execution environments the
system may employ – Docker is assumed to be the main service containerization
technology, but mobile application containers or images may be also be included.
In practice, Docker Swarm implements an interface to ensure loose coupling
and avoid vendor lock-in (DR2). The depicted artifact repositories provide, for
example, container images. Finally, logging and monitoring facilities address
traceability and auditability according to DR3; to this end, all user actions,
update operations and system interactions are recorded. Concrete technological
choices for implementation of the functional components are illustrated in grey
in Fig. 2; those represent contemporary technologies that can be adopted for
implementation.

3.3 Update Workflow

Given the architecture of Fig. 2 and upon a user’s request, the update workflow
for an air-gapped system is comprised of the following steps, which are sufficiently
recorded per session, in order to ensure traceability and auditability:



6 Shabelnyk et al.

Orchestrator Plugins

Artifacts
Repositories

Services

Gateway

Frontend
Angular

discovers services

proxies toBackend/Proxy
Spring Boot
Zuul Proxy

User Management
PostgreSQL

Services Registry

Discovery server
Eureka

Configuration server
Spring Cloud Config

Dependency Resolver
PySMT

monitors

Logs & Monitoring

Monitoring Database
Prometheus

Visualizer
Grafana

Web UI

copiesuses

Core
Spring Boot

Database
PostgreSQL

register at

Execution Environments

Config files
Config files

Docker Swarm Plugin
Spring Boot

PF4J

Config files
Images

O
ut

si
de

provisions/updates

uses

Config files
Apk files

Fig. 2: Service-based architecture supporting updates of air-gapped systems.

1. The user responsible for the preparation and deployment of an update (e.g.,
the designated release engineer) selects an available system and defines which
of its services should be updated and to which versions (DR3).

2. The Dependency Resolver yields a satisfiable combination of service versions
(ref. DR1).

3. The Core service, accordingly invoking the Dependency Resolver prepares
the corresponding artifacts by copying them to a physical medium from
external repositories, and creates a Deployment Plan.

4. Given the Deployment Plan produced, the target air-gapped system is phys-
ically visited, the update configuration is verified against the local service
configuration (as per DR1), and the update is applied; the services can be
provisioned in the target host.

4 Service Dependency Resolution

At the heart of the update workflow lies a dependency resolution step. In this
section we first discuss how to model service versions, including how the problem
of resolving their dependencies can be formulated in order to enable its automatic
resolution. This regards an implementation of the critical Dependency Resolver
component of Fig. 2. As this component amounts to a black box, we outline a
characteristic manner in which it can be implemented; recent literature on the
topic can further extend it to cover more specialized cases.

4.1 Problem Formulation

Dependency resolution entails finding the right combination of software compo-
nents while preserving certain constraints such as version compatibility; the un-



Updating Air-Gapped Service-Based Systems 7

derlying problem is NP-Complete [12]. Dependency resolution is particularly per-
tinent in component-based software architectures, where it is manifested in vari-
ous forms; in free and open source software for instance, the components are often
called packages and are handled by package managers. Although package man-
agers differ in how they handle dependency resolution, dependencies/packages
usually have certain common traits [8, 9]: i) name and version which are uniquely
identifiable, ii) dependencies to other components (also called positive require-
ments), iii) conflicts expressing absence of certain other components (also called
negative requirements), and iv) features, identifiers of “virtual” components that
may be used to satisfy dependencies of other components.

For our service-based setting, we adopt semantic versioning [13], where three
numbers separated by a dot are used, e.g. “2.4.1.” The first number indicates
a major release typically introducing breaking changes. The middle number re-
flects a minor version change, signalling that new functionality has been added
but with full backwards compatibility preserved. The last number stands for
patch or micro changes which indicates bug fixes; patch changes are also fully
backwards compatible. Dietrich et al. [14] propose a comprehensive classification
of version constraints, including describing fixed, soft, variable dependencies, or
typical version semantics such as at least, at most, or latest; the approach we
advocate can be further extended to support them.

Resolving which versions are needed to perform a valid update of a sys-
tem has been approached in several ways including boolean satisfiability (SAT),
Mixed Integer Linear Programming (MILP), Answer Set Programming (ASP),
or Quantified Boolean Formulae (QBF) [9, 8, 15, 16]. A typical way is working
within Satisfiability Modulo Theories (SMT), where solving consists in deciding
the satisfiability of a first-order formula with unknowns and relations lying in cer-
tain theories; formulas are constructed over usual boolean operators, quantifiers
over finite sets, as well as integer linear arithmetic operators. In the following, we
informally describe the construction of such a formula which integrates known
facts about a system, along with certain constraints; the interested reader can
consult technical literature on the topic [17]. The intuition is as follows. Facts
capture the current state of the system as well as its desired state; for example,
consider that services A and B with versions “1.3” and “18.2.1” respectively
are installed, and A is sought to be upgraded to version “1.4.” Constraints en-
code dependencies between services; for example, service B of version “18.2.*”
requires service C of fixed version “1.2.5”. In essence, given (i) a configuration
of already installed services of certain versions, (ii) a service of a newer version
which is sought to be updated, (iii) dependency relations between services, and
(iv) a set of available versions per each service, we seek to identify which ver-
sions of services are required to perform a valid update. A valid update is one
that satisfies all service dependencies, and transitions the system to an upgraded
(resp. for some service) state. Specifically, the components of the problem regard
the desired state, dependencies and the current service configuration:

– upgrade-versions: One or more versions of different services that should be
upgraded. For example, the user may desire to upgrade service A to version



8 Shabelnyk et al.

n and service B to version m due to newly introduced features in the first
one and a recently fixed bug in the second.

– available-versions: Versions of services that are available to be installed,
sourced for instance from development repositories.

– dependencies: A dependency of a service to versions of another, for example
service A with patch constraint “7.5.*” depends on service B with minor
constraint “10.*.*.”

– installed-versions: Versions of services which are already installed in the
system; this is the current state of the system.

We abstain from providing a formal representation; existence of versions amounts
to assignment to variables (e.g., within linear arithmetic in SMT), while depen-
dencies consist of implications (e.g., selection of service A version 2.1 requires
B version 3.4). As such, informally, the dependency resolution problem amounts
to: “Given service versions the user wants to update to, versions available and
services already installed, derive a set of service versions that adhere to version
dependencies, if such a set exists”.

Algorithm 1 ALL-VER
Input upgrade version(s), dependency

constraint(s), available version(s) per compo-
nent, installed version(s)

Output set of all valid versions per
component

1: /* Construct domain */
2: domain← dependencies
3: /* Construct facts */
4: hardFacts←upgrade-versions,exactly-one
5: hardFacts←+ available-versions
6: softFacts← installed-versions
7: /* Construct problem */
8: problem← domain, hardFacts, softFacts
9: /* Iterate over service versions */

10: for i← 1, versions do
11: /* pr is partial result */
12: for pr← solve(problem,i) do
13: /* add partial to results */
14: result.add(pr)
15: /* negate partial result */
16: problem.not(pr)
17: end for
18: end for
19: Return result

Algorithm 2 MAX-VER
Input upgrade version(s), dependency

constraint(s), available version(s) per compo-
nent, installed versions

Output set of maximum versions per
component

1: /* Construct domain */
2: domain← dependencies
3: /* Construct facts */
4: hardFacts←upgrade-versions,exactly-one
5: hardFacts←+ available-versions
6: softFacts← installed-versions
7: /* Construct problem */
8: problem← domain, hardFacts, softFacts
9: components← available version(s)

10: /* Iterate over components */
11: for i← 1, components do
12: /* Apply ALL-VER to component i */
13: versions← all ver(problem, i)
14: max ver← max(versions)
15: result.add(max ver)
16: /* Version holds for component i */
17: problem.add(max ver, i)
18: end for
19: Return result

4.2 Dependency Resolution Strategies

The generic setting previously presented amounts to a generic problem formula-
tion; thereupon, one can build further strategies for dependency resolution, with
different objectives, beyond merely being satisfiable. In particular, we advocate
two reference strategies: the MAX-VER strategy determines the most recent
versions that constitute a valid update, while ALL-VER discovers all feasible
versions. The latter is intended to enable some other selection criterion – for



Updating Air-Gapped Service-Based Systems 9

example, selecting a version which has been more widely deployed (thus perhaps
more bug-free) – but naturally, at a higher computational cost. We note that
the strategies describe the general process – optimizations (taking into account
solver particularities, for example), are further possible.

The strategies employed are illustrated in Algorithms 1 and 2. Both take as
input the desired service version(s), the dependency constraints, the available
versions per component, and the current installed configuration. The ALL-VER
strategy consists of three steps: (i) construct the domain using dependency con-
straint(s), (ii) construct facts using available and installed version(s), (iii) find
solutions. The latter step entails considering each version variable, querying the
solver for a partial model (a set of valid results), storing the results, negating
the partial model, and querying the solver again until all partial models are de-
livered. Conversely, the MAX-VER strategy identifies first all versions for the
current service, subsequently obtains the partial model and negates the inter-
mediary results. Thereupon, all valid options for the component are found, and
the maximum (most recent) is selected. The iteration continues – each time the
problem is increasingly constrained.

5 Evaluation

To provide concrete support for our air-gapped update framework, we realized a
prototypical end-to-end system; technological choices made for implementation
of the functional components are the ones illustrated in grey in Fig. 2. There-
upon, we evaluate our approach over a characteristic scenario elicited from the
Comprehensive Nuclear-Test-Ban Treaty (CTBT) Organization. Subsequently,
we assess performance aspects. We conclude with a discussion. Our evaluation
goals are two-fold; we seek to investigate (i) applicability of the proposed so-
lution, in terms that the architecture and system used are able to be used in
practice (Sec. 5.1), and (ii) performance in realistic settings (Sec. 5.2). The for-
mer entails considering a realistic scenario in a mission-critical setting, where
the workflow and architecture advocated are employed end-to-end. The latter
requires assessing dependency resolution over typical problem sizes.

5.1 Applicability

The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is an in-
ternational body tasked with verifying the ban on nuclear tests, operating a
worldwide monitoring system and, after the treaty’s entry into force, conduct-
ing On-Site Inspections (OSIs). Being the final verification measure under the
treaty, the purpose of an On-Site Inspection is to collect evidence on whether
or not a nuclear explosion has been carried out. The inspection team consists
of scientific experts, while the strict regulatory compliance framework in place
enforces stringent security requirements on data handling, which imposes strict
air-gapped isolation upon all software systems involved. The scenario we consider
was elicited via interviews from key stakeholders, and concerns a characteristic
case where air-gapped update is required.



10 Shabelnyk et al.

Fig. 3: Fragment of an On-Site-Inspection Exercise illustrating air-gapped sites
hosting applications (Image credit: CTBTO OSI Division).

When an On-Site Inspection is dispatched to a remote location, all software
systems are carefully prepared, configured and shipped fully provisioned during
the launch phase. Fig. 3 illustrates an airborne photograph of this setup during
an Integrated Field Exercise. The shown software systems help the inspection
team to conduct an inspection by: planning field missions (Planning WA App),
collecting data and metadata in the field depending on the used inspection tech-
nique (Field App), field data review and classification (Review RA App), con-
ducting radionuclide measurements of environmental samples (LabApp), and
receiving or handing over samples (Lab Field App). Observe that the site is
network-isolated – there is no uplink, and furthermore sub-systems are not con-
nected to each other; for instance, there is a strict air gap between the Working
Area (WA) and Receiving Area (RA) applications, indicated with the red dotted
line in Fig. 3. The software setup is comprised of particular versions as shown in
Fig. 4. However, they may need to be updated; this may be a case where the In-
spected State Party (ISP – the nation or state in which inspection is performed)
provides a piece of equipment to conduct e.g., radionuclide measurements in the
mobile laboratory, requiring new software to be deployed. As such, the Labora-
tory Application must be updated to a newer version. In such a case, an officer
assesses the change requested and plans the update procedure. Fig. 4 highlights
in red the application which uses the equipment directly, and it highlights in
orange four other components which must now incorporate changes as well. The
diagram also shows how communication between components is implemented,
and indicates the air-gap with dotted lines between applications.

Observe that in order to update the Laboratory Application to version 3.9.1,
new versions of others are required: Field Application (A component), LabField



Updating Air-Gapped Service-Based Systems 11

Application (A component), Planning (WA) App PWA (W component), Lab
App (W component). The procedure amounts to the following phases:

– Bootstrapping. Versions, dependency constraints and artifacts are obtained.
Those are defined beforehand by the respective software teams managing
them: for the case considered, those are Lab App W “3.9.*” requires Lab-
Field App A “3.1.0”, Lab App W “3.9.*” requires Field App A “7.9.*,” Lab
App W “3.9.*” requires Planning (RA) App W “20.1.*,” and Lab App W
“3.9.*” requires Planning (WA) App PWA “20.1.*.” Recall Sec. 4.1 and ob-
serve that the dependee version is restricted to only a fixed one of LabField
App A, while in the rest only major and minor versions specified and the
patch one is open.

– Update Plan. The plan to perform needed updates is calculated, and the
relevant service artifacts are obtained – those include appropriate container
images, data or other binaries. Specifically, the officer selects Lab App W
(current installed version “3.8.2”), which is intended to be updated to version
“3.9.1.” The framework resolves dependencies and returns a list of manda-
tory updates for other components: LabField App A “3.1.0,” Field App A
“7.9.0,” Planning (RA) App W “20.1.0,” and Planning (WA) App PWA
“20.1.0.” Subsequently, the appropriate artifacts corresponding to the com-
ponents are obtained from development repositories.

– Update Execution. Updates are performed by physically visiting each air-
gapped host – details of this step involve protocols outside the scope of this
paper.

Overall, we observe that design requirements DR1-DR3 regarding dependabil-
ity of the update process performed, interoperability with respect to the soft-
ware supported and auditability regarding update actions are featured in the
case performed, pointing to increased applicability of the architecture and end-
framework.

5.2 Dependency Resolution Performance

The strategies employed to resolve dependencies represent the most computa-
tionally intense activity of the update process; as such, our quantitative eval-
uation concerns performance assessment with typical problem sizes as elicited
from stakeholders (see previous section). Recall that the dependency resolution
strategies employ multiple calls to an SMT solver; moreover, they do so differ-
ently with MAX-VER deriving (conservative) maximum version resolution only,
while ALL-VER targets resolution of all versions, at higher computational cost.

Experiments Setup. Our experiment setup entails (i) generating a suitable
dataset and (ii) deploying the proposed framework on a commodity laptop com-
puter typically used in the setting described in the previous section. To obtain
a suitable dataset for our experiments, we automatically generate versions in
predefined ranges, while constraints and components are set manually to ensure
satisfiable solutions. Thereupon, problem instances are synthesized, varying the
number of components and the number of versions per component. Experiments



12 Shabelnyk et al.

Core Web App
20.0.3 → 20.1.0

Geospacial Server
2.12.2

Database
9.5.24

Routing Server
1.0.3

Planning (WA) App PWA

Core Web App
20.0.3 → 20.1.0

Geospacial Server
2.14.2

Database
9.5.24

Routing Server
1.0.3

Planning (RA) App PRA

Android App
7.8.0 → 7.9.0

Field App F

Two-way air-gapped data exchange (external storage)

Two-way on-demand data transfer (LAN cable)

One-way on-demand data transfer (LAN cable)

Core Web App
4.2.0

Database
12.5.0

Documentation App D

Core Web App
3.8.2 → 3.9.1

Database
13.1.0

Lab App L

Android App
3.0.0 → 3.1.0

LabField App LF

QR

QR One-way QR-code-based data transfer

Java App J1 Java App J2

∞ Constant LAN connection

∞

∞

W G

D R

W G

D R

W

D

A A

W D

J J

C E

∞

Java App
1.0.6

Java App
1.0.2

Inventory App I

Core App
6.1.0

Extension
2.0.0

C E

Air gap

Fig. 4: Service-based software architecture of the OSI case study, illustrating
applications comprised of services, with versions (before and after the update)
in bold. Applications’ air-gapped deployment is denoted with dotted lines.

were performed on a laptop computer featuring an Intel® Core™ i7-6820HQ
CPU clocked at 2.70GHz, using PySMT 0.9.0 for the programmatic formula
construction and MathSAT 5.6.1 as the underlying solver.

Experiments Results. Quantitative results are illustrated in Fig. 5, for
configurations of 50 and 125 versions and increasing the number of services con-
sidered. We are interested to investigate i) execution time, and ii) the memory
footprint, due to the size of the formulas constructed. Results show that strate-
gies MAX-VER and ALL-VER can handle a realistic number of versions per
component within acceptable time budgets. For a system with 15 components
and 50 versions for each, the execution time is in the order of seconds, depending
on the applied strategy. Although the memory footprint does not grow linearly
with the size of the problem, it is arguably insignificant for modern systems.

5.3 Discussion

Based on our evaluation results, we believe to have demonstrated that our frame-
work facilitates the update process for air-gapped systems. A typical scenario
was elicited and modelled in Sec. 5.1, demonstrating applicability; we success-
fully modelled a realistic scenario elicited from stakeholders without running into
any conceptual issues with regard to our notions of service versions, dependency
management and architecture materializing air-gapped updates. On a functional
level, a satisfiable combination of versions is computed and a deployment plan
is formed, to be installed via the physical visit where the service artifacts are
pushed to the target host. Furthermore, the architecture illustrated in Fig. 2
provides for an end-to-end solution, including configuration management, user



Updating Air-Gapped Service-Based Systems 13

0 5 10 15 20
0

5

10

15

20

Number of services

E
x
e
c
u
ti
o
n

ti
m
e
(s
)

MAX-VER 125

ALL-VER 125

MAX-VER 50

ALL-VER 50

(a)

0 5 10 15 20
0

5

10

Number of services

M
e
m
o
ry

p
e
a
k
(M

B
)

MAX-VER 125

ALL-VER 125

MAX-VER 50

ALL-VER 50

(b)

Fig. 5: Dependency resolution performance (a) and memory footprint (b) of
MAX-VER and ALL-VER strategies, over number of services for 50 and 125
versions each.

authentication and container management. Since we followed versioning best
practices (tailored for contemporary service-based systems) and employed sat-
isfiability which is widely applied for version management, we believe internal
threats to validity of our results to be minimal. However, we note that the case
study, although realistic and catering to the needs of an international organiza-
tion, implied certain type and number of service components, as well as certain
design choices in the overall service-based architecture. This is additionally rel-
evant to the quantitative analysis of the dependency resolution; vastly different
systems or with different update procedures would imply changes to the work-
flow and dependency resolution strategies. This would point that results of the
case study may not apply to highly diverse cases, which is a threat to external
validity. We believe identifying variation points in the architecture presented as
a promising avenue of future work.

6 Related Work

The architectural framework proposed is founded on the general area of updating
software systems. Accordingly, we classify related work into software evolution
management and related approaches dealing with air-gapped environments.

The process of updating service-oriented software systems has been exten-
sively studied, especially concerning so-called dynamic updates [18–20], aiming
for reducing downtime while an update is performed. Panzica et al. [19] present
a model-driven approach to support software evolution of component-based dis-
tributed systems. It requires to build a model, interface automata, to automati-
cally identify the specific class of update. The class is derived based on informa-
tion locally available in the component and indicates in which state and under
which environment condition the system can be correctly updated. In our case,
due to the air-gapped nature of the environment, (i) distributed transactions do
not take place, and (ii) updates need not happen at runtime. This makes our



14 Shabelnyk et al.

problem more akin to an offline one; the runtime context of distributed compo-
nents is thus not relevant and need not be maintained. Importantly, works on
dynamic updates focus on when to update, while our focus is on what to include
in an update.

Software update usually relies on dependency resolution (also known as de-
pendency solving) to identify suitable components and compatible versions. De-
pendency resolution has been approached by using various types of solvers such
as boolean satisfiability (SAT), Mixed Integer Linear Programming (MILP), An-
swer Set Programming (ASP), or Quantified Boolean Formulae (QBF) [9, 8, 15,
16]. Abate et al. [9] argue that dependency solving should be treated as a sepa-
rate concern from other component management concerns, proposing a modular
software construct to decouple the evolution of dependency solving from that
of specific package managers and component models, with a Domain Specific
Language (DSL) called CUDF as the interface – the DSL can be used to encode
component metadata and user update requests. We identify integrating such
advanced features as an interesting avenue of future work.

An alternative approach to updates over a network is to take advantage of
mobile agents [21, 22]. Software packages are updated on a central server, then
mobile agents installed on a client receive the update. However, this approach
does not target air-gapped networks, as it relies on at least occasional network
connectivity for transfer of updates. Gravity [23] is a delivery system for pro-
visioning cloud-native applications in regulated, restricted, or remote environ-
ments. It allows packaging complex Kubernetes clusters into portable images
for later delivery to a cloud-hosted provider-agnostic environment. Among oth-
ers, deployment in air-gapped environments is additionally targetted allowing
to package a whole cluster, including dependencies, to a tarball, eliminating the
need for utilizing a network connection during installation. Gravity aims at pack-
aging and transferring of complex Kubernetes clusters, abstaining however from
addressing versions – our approach further provides plugin-style support for dif-
ferent target runtime environments, addressing Docker support out-of-the-box
while also similarly allowing Kubernetes for orchestration.

Azab et al. [24] target an isolated infrastructure for storing and process-
ing sensitive research data, providing procedures to provision Docker containers
in isolated environments. Additionally, security-related disadvantages of Docker
containers are identified, and mitigations are proposed. We believe this reinforces
the technological choices made in the architecture of Fig. 2 – furthermore [24]
showed that Docker can be indeed successfully applied to provision software in
network-isolated environments. The study of security limitations of containers
and their secure deployment [25, 26] are also important aspects to be taken into
account in the overall air-gapped context.

7 Conclusion and Future Work

A central activity within the lifecycle of service-based systems is management of
their software updates. Although it is a problem that has been widely tackled



Updating Air-Gapped Service-Based Systems 15

by the community in the past, settings where security constraints impose com-
pulsory network isolation call for specialized treatment. To this end, we adopted
an architectural viewpoint and presented a technical framework for updating
service-based systems in air-gapped environments. After describing the partic-
ularities of the domain, we provided suitable modelling notations for service
versions, whereupon satisfiability is used for dependency resolution; an overall
architecture was presented in an end-to-end solution. We evaluated the appli-
cability of the framework over a realistic case study of an international organi-
zation, and assessed the performance of the dependency resolution procedures
for practical problem sizes. As for future work, we identify providing a complete
reference architecture that engineers and organizations can use for air-gapped
updates of service-based systems as per ISO/IEC/IEEE 42010. Moreover, within
the update workflow, dependency constraints defined between components and
their versions are left to be set by developers without any verification whether the
specified constraint is valid; automatic discovery of dependencies could mitigate
this problem, which we identify as future work. Similarly, architecture descrip-
tion languages may be used to ensure that the provided interfaces of services
match the required ones of their dependents. Adequately keeping track of the
remote state of air-gapped systems is an adjacent problem as well. Finally, ex-
plicitly considering the criticality of the domain, security is often a key concern
that permeates processes, software architectures and software construction and
maintenance and as such warrants further investigation.

References

1. M. M. Lehman, “Programs, life cycles, and laws of software evolution,” Proceedings
of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

2. E. Byres, “The air gap: Scada’s enduring security myth,” Communications of the
ACM, vol. 56, no. 8, pp. 29–31, 2013.

3. M. Guri, G. Kedma, A. Kachlon, and Y. Elovici, “Airhopper: Bridging the air-gap
between isolated networks and mobile phones using radio frequencies,” in 2014
9th International Conference on Malicious and Unwanted Software: The Americas
(MALWARE), pp. 58–67, IEEE, 2014.

4. M. Guri, B. Zadov, and Y. Elovici, “Odini: Escaping sensitive data from faraday-
caged, air-gapped computers via magnetic fields,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 15, pp. 1190–1203, 2019.

5. J. A. Morales, H. Yasar, and A. Volkmann, “Implementing devops practices in
highly regulated environments,” in Proc. 19th International Conference on Agile
Software Development (XP 2018), Companion, 2018.

6. S. Wong and A. Woepse, “Software development challenges with air-gap isolation,”
in Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2018, (New York, NY, USA), p. 815–820, Association for Computing
Machinery, 2018.

7. F. Mancinelli, J. Boender, R. D. Cosmo, J. Vouillon, B. Durak, X. Leroy, and
R. Treinen, “Managing the complexity of large free and open source package-based
software distributions,” in Proc. 21st IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2006), 2006.



16 Shabelnyk et al.

8. P. Abate, R. Di Cosmo, J. Boender, and S. Zacchiroli, “Strong dependencies be-
tween software components,” in 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pp. 89–99, IEEE, 2009.

9. P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli, “Dependency solving: a
separate concern in component evolution management,” Journal of Systems and
Software, vol. 85, no. 10, pp. 2228–2240, 2012.

10. P. Abate, R. D. Cosmo, G. Gousios, and S. Zacchiroli, “Dependency solving is still
hard, but we are getting better at it,” in Proc. 27th IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER 2020), 2020.

11. C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh, “On the interplay between
cyber and physical spaces for adaptive security,” IEEE Trans. Dependable Sec.
Comput., vol. 15, no. 3, pp. 466–480, 2018.

12. C. Russ, “Version sat, research.swtch.com/version-sat, accessed: 22.10.2020,” 2016.
13. T. Preston-Werner, “Semantic versioning 2.0.0. 2013,” Online: http://semver.org,

2019.
14. J. Dietrich, D. Pearce, J. Stringer, A. Tahir, and K. Blincoe, “Dependency ver-

sioning in the wild,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), pp. 349–359, IEEE, 2019.

15. D. Le Berre and A. Parrain, “On sat technologies for dependency management and
beyond,” 2008.

16. F. Lonsing and A. Biere, “Depqbf: A dependency-aware qbf solver,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 7, no. 2-3, pp. 71–76, 2010.

17. C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of Model
Checking, pp. 305–343, Springer, 2018.

18. L. Baresi, C. Ghezzi, X. Ma, and V. P. La Manna, “Efficient dynamic updates
of distributed components through version consistency,” IEEE Transactions on
Software Engineering, vol. 43, no. 4, pp. 340–358, 2016.

19. V. Panzica La Manna, “Local dynamic update for component-based distributed
systems,” in Proceedings of the 15th ACM SIGSOFT symposium on Component
Based Software Engineering, pp. 167–176, 2012.

20. S. Ajmani, B. Liskov, and L. Shrira, “Modular software upgrades for distributed
systems,” in ECOOP 2006 – Object-Oriented Programming (D. Thomas, ed.),
(Berlin, Heidelberg), pp. 452–476, Springer Berlin Heidelberg, 2006.

21. L. Bettini, R. De Nicola, and M. Loreti, “Software update via mobile agent based
programming,” in Proceedings of the 2002 ACM symposium on Applied computing,
pp. 32–36, 2002.

22. D. B. Lange, “Mobile objects and mobile agents: The future of distributed comput-
ing?,” in European conference on object-oriented programming, pp. 1–12, Springer,
1998.

23. J. Marin, “Deploying applications into air gapped environments,
goteleport.com/blog/airgap-deployment, accessed: 24.03.2021,” 2019.

24. A. Azab and D. Domanska, “Software provisioning inside a secure environment as
docker containers using stroll file-system,” in 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 674–683, IEEE,
2016.

25. A. Martin, S. Raponi, T. Combe, and R. D. Pietro, “Docker ecosystem - vulnera-
bility analysis,” Comput. Commun., vol. 122, pp. 30–43, 2018.

26. Q. Xu, C. Jin, M. F. B. M. Rasid, B. Veeravalli, and K. M. M. Aung, “Blockchain-
based decentralized content trust for docker images,” Multimedia Tools and Appli-
cations, vol. 77, no. 14, pp. 18223–18248, 2018.


