Automated Monitoring of Web User Interfaces

ENNIO VISCONTI, TU Wien, Austria
CHRISTOS TSIGKANQOS, University of Athens, Greece
LAURA NENZI, University of Trieste, Italy

Application development for the modern Web involves sophisticated engineering workflows — including user
interface (UI) aspects. Such user interfaces comprise Web elements that are typically created with HTML/CSS
markup and JavaScript-like languages, yielding Web documents. Their testing entails performing checks
to examine visual and structural parts of the resulting Ul software against requirements such as usability,
accessibility, performance, or, increasingly, compliance with standards. However, current techniques are largely
ad-hoc and tailor-made to specific classes of requirements or Web technologies and extensively require human-in-
the-loop qualitative evaluations. Web UI evaluation so far has lacked formal foundations, which would provide
assurances of compliance with requirements in an automatic manner. To this end, we devise a methodology
and accompanying technical framework for web Uls. In our approach, requirements are formally specified in a
spatio-temporal logic able to capture both the layout of visual components as well as how they change over
time, as a user interacts with them. The technique we advocate is independent of the underlying technologies
a Web application may be developed with, as well as the browser and operating system used. To concretely
support the specification and evaluation of UI requirements, our framework is grounded on open-source tools for
instrumenting, analyzing, and reporting spatio-temporal behaviors in webpages. We demonstrate our approach
in practice over Web accessibility standards posing challenges for automated verification.

CCS Concepts: * Software and its engineering — Formal software verification; * Theory of computation
— Logic and verification; * Human-centered computing — Web-based interaction.

ACM Reference Format:
Ennio Visconti, Christos Tsigkanos, and Laura Nenzi. 2025. Automated Monitoring of Web User Interfaces . 1,
1 (October 2025), 26 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Application development for the modern Web' is a sophisticated process that involves long engineer-
ing pipelines spanning from the specification of business requirements to the worldwide delivery of
applications and requires complex continuous integration and deployment workflows. Most of the
tasks involved in the process have seen a significant boost in the level of automation and repeata-
bility in recent years. While this is true for many aspects of current development, things are fairly
different when considering User Experience (UX) issues. Aspects like usability, accessibility, etc. are
becoming increasingly crucial for modern applications, and significant industrial effort is being put

I'The use of ‘web’ or ‘the web’ in this paper refers to World Wide Web sites or apps, and their related technologies as defined
by the international standards from the World Wide Web Consortium (W3C), and the Web Hypertext Application Technology
Working Group (WHATWG).

Authors’ addresses: Ennio Visconti, ennio.visconti@tuwien.ac.at, TU Wien, Vienna, Austria; Christos Tsigkanos, University
of Athens, Athens, Greece, christos.tsigkanos @aerospace.uoa.gr; Laura Nenzi, Inenzi @units.it, University of Trieste, Trieste,
Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Association for Computing Machinery.

XXXX-XXXX/2025/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2025.

HTTPS://ORCID.ORG/0000-0002-1146-4850
HTTPS://ORCID.ORG/0000-0002-9493-3404
HTTPS://ORCID.ORG/0000-0003-2263-9342
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-1146-4850
https://orcid.org/0000-0002-9493-3404
https://orcid.org/0000-0003-2263-9342
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

into prioritizing applications that assess them at some level [22]. Validation within a user interface
engineering workflow is dominated by User Interface (UI) testing, which concerns mechanisms
intended to test aspects of software that a user interacts with. This typically entails inspecting visual
elements against requirements - both in terms of functional (such as regulatory conformance), and in
terms of non-functional (e.g., performance, timings) ones. Such is the case in contemporary websites,
which comprise Web elements created with CSS, JavaScript, and other programming languages,
yielding web documents. Web Ul testing performs tests and checks assertions of these elements to
examine visual and structural parts of the software against requirements such as usability, visual
design, performance, or increasingly, compliance with standards.

Current web UI testing techniques can be generally categorized as (i) manual-based testing, where
graphical screens are checked manually against requirements, (ii) record and replay methods, where
automation tools are used to first capture test steps and subsequently execute them on the application
under test, and (iii) model-based testing. The latter entails building some representation of the web
application, determining inputs and calculating outputs that are used to exercise the application under
test, and comparing testing output with what the model expects. Such techniques however are largely
ad-hoc and tailor-made to specific classes of requirements and web technologies, or extensively
require human-in-the-loop qualitative evaluations. Web UI validation so far has largely lacked formal
foundations, which would enable providing (in an automatic manner) assurances on compliance
with requirements, something highly desired to check complex e.g., accessibility requirements, so
far evaluated manually. To this end, we exploit recent advances of spatio-temporal verification and
devise a methodology accompanied by a technical framework for monitoring requirements over web
Uls. In our approach, requirements are formally specified in a logic able to capture both aspects of
web documents — the layout of visual components as well as how they change over time as a user
interacts with them.

The cornerstone of our approach is that Uls can be formalized as a spatio-temporal trajectory
g: LXT — P(C) x E, where locations of L correspond to locations of the graphical device (e.g.,
pixels of the screen), time points of 7~ correspond to the graphical refresh frames, £ (C) is a power
set of graphical UI components (e.g. buttons, images, input fields, etc.) and E are interaction events
that a user may induce. The advantages of a formal perspective in such a specification come from the
fact that it can be defined and monitored regardless of the specific physical device or browser being
used, allowing automated support for a wide set of use cases in interaction simulation and testing,
which today are heavily platform-specific.

Our contributions target automated monitoring of web Uls, lie within a novel application of formal
methods in the contemporary Web engineering workflow, and are as follows:

e We propose a methodology for the monitoring of web Uls, accompanied by a technical
framework integrated with current Web technologies;

o We show how Web documents can give rise to formal models, whereupon a spatio-temporal
logic can be used to express general requirements;

e We illustrate WEBMONITOR- an end-to-end technical framework, where, given a webpage
target, and a specification written in a convenient DSL, automated procedures carry out
analysis’;

o We demonstrate automated monitoring of requirements sourced from the widely-applicable
Web Accessibility Standards (WCAG?2.1 [15]), and investigate verification performance over
different screen sizes and browser engines.

The approach we advocate is independent from the underlying technologies a web application is
developed with, as well as from the browser/operating system in use (e.g. Google Chrome, Microsoft

2WEBMONITOR has been previously presented as a tool demo at [57], and can be found at github.com/ennioVisco/webmonitor.

, Vol. 1, No. 1, Article . Publication date: October 2025.

github.com/ennioVisco/webmonitor

Automated Monitoring of Web User Interfaces 3

Edge, Mozilla Firefox, both used interactively and headless, are supported out of the box) — a stark
difference from existing approaches. Moreover, it can be easily extended to non-web applications
(e.g. videogames’ Uls or desktop applications), provided proper instrumentation is in place. Our
implementation is open-source software, and can be found in the accompanying material along with
an experiment reproduction kit.

The rest of the paper is structured as follows. Sec. 2 provides an overview of our approach and
introduces a motivating example, used throughout the paper. Section 3 presents spatial and temporal
models of web Uls, while Sec. 4 discusses logic-based reasoning on such models. Sec. 5 presents
the instrumentation of a technical framework supporting web Ul monitoring, including its key
architectural features. Sec. 6 showcases how our approach can be used in practice, Sec. 7 discusses
the evaluation of our approach, Sec. 8 summarizes related work and Sec. 9 concludes the paper.

2 OVERVIEW: WEB Ul MONITORING

Software application development for the modern Web culminates in an artifact — the resulting web
UI, which is the product deployed and finally delivered to users. To this end, we seek mechanisms
intended to test the aspects of web application software with which a user interacts. Those reflect
increasingly important non-functional requirements of contemporary web applications such as
usability, accessibility, or compliance with standards. In contrast to other efforts in the domain, we
pursue an automated way of assessing whether web UI designs conform to stated requirements.
Requirements can be quite complex, as they may predicate on spatial arrangement and characteristics
of visual elements as well as sequences of user interactions.

Fig. 1 illustrates a birds-eye view of the domain and proposed approach for automated monitoring
of Web user interfaces. The development process revolves around the creation of a Ul, which
should satisfy certain requirements assumed to be elicited from stakeholders. Those are formalized
into properties, while from the user interface, a spatio-temporal UI model is derived. Such a model
captures the spatial arrangement and characteristics of visual elements as well as interaction sequences
inherent in the desired User Experience (UX), and is intended to be analyzable in an automatic
manner. Subsequently, the model and properties are given as input to an oracle, which produces
a verdict — an evaluation result of whether the model satisfies the stated properties. In case of
violations, a visual counterexample is returned, which is shown to the developer. The last step is
crucial, and highlights the framework’s place within the development cycle: the developer may revise
the application and invoke the cycle again. The whole process is cast within a continuous integration
or continuous delivery (CI/CD) workflow, where spatio-temporal model extraction, analysis, and
counterexample generation are performed in an automated manner.

Running example. Consider a cookie consent notice — a banner informing the user about the
cookies stored on the browser to track a website’s usage. Cookie consent notices are enforced by an
increasing number of regulations, most notably GDPR [56] in the European Union and CCPA [14] in
California, USA. These normative acts prescribe precise levels of disruptions in users’ perception of
the page and also establish binding sanctions that can even reach 4% of a company’s annual revenue
for non-compliance with the regulation [31]. Such a cookie popup must be easily dismissible by
the user. The design of cookie consent notices has to satisfy certain functional and non-functional
requirements, some of which may be imposed by regulations [15, 56] directly, others that derive
from common design practices [49], and some that may come from internal design guidelines. We
distill some characteristic ones:

ER1 The popup should be visible to the user. As a visual component, the entirety of the popup
should be within the window that the user perceives as the interface so that all the relevant

, Vol. 1, No. 1, Article . Publication date: October 2025.

4 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

<]7 Development Cycle

Visual
Counterexample

I
I
® <«
L = |
I
I

00 : Spatio- ®

_D [)) ——> Temporal

Properties (o)

Ul Requirements MEd 2

|

|

|

|

|

|

|

|

|

| |
| |
| |
| |
| ~\ |

P—
| |
| s = |
- el

| |
| |
| |
|

|

1 |

|

|

|

|

|

|

|

|

|

Verification Result

i

|
| Spatial Model

u Interf; I i Y

ser Interface |

: 020,020
| Interaction
: Behaviour
|
| Interface Spatio-
: Temporal Model (M) WebMonitor |

Fig. 1. Automated monitoring of web user interfaces.

information is available from the beginning of the navigation session (e.g. reasons for usage,
link to policies, acceptance, denial, and cookie settings buttons).

ER2 The popup should be dismissible: if the user clicks on some relevant button (e.g., to accept or
deny cookie permissions), the popup should disappear.

ER3 The popup should be visible (ref. ER1) to the user within two seconds after the page has been
loaded; it should remain visible until the user explicitly dismisses it (ref. ER2).

Observe that the example describes a characteristic case that involves both spatial and temporal
aspects of the UI; visibility of the popup (ER1) can be inspected upon a snapshot of the UI, while
dismissibility (ER2) involves checking if the popup disappears over a sequence of user actions. The
last requirement (ER3) exemplifies a complex behaviour since it requires that both ER1 and ER2
hold but also denotes timing constraints for the UI design of this component.

Supporting the evaluation of such requirements upon a web page design in an automated way,
calls for a dedicated methodology and technical framework. Those should be able to i) capture
requirements and Ul design in an unambiguous way amenable to automated analysis, ii) instrument
appropriately external components (such as browser APIs), and iii) contextualize analysis and
interpretation of results within the typical development cycle.

3 SPATIO-TEMPORAL MODELS OF WEB UIS

A (graphical) user interface (UI) is a software system for human-computer interaction, involving
functional components and behavioral events placed in areas of a graphical space (i.e., the screen),

, Vol. 1, No. 1, Article . Publication date: October 2025.

Automated Monitoring of Web User Interfaces 5

evolving over time as the interaction with the user unfolds. In the web’s context, Uls are challenged
by variations in devices that will effectively run them. However, such web Uls are also grounded on
rules and established technologies that abstract the specificity of the operating system and browser
vendors of the device that is running them, allowing for platform-agnostic analysis methodologies
such as the one advocated in this paper. From the perspective of an external observer, graphical Uls
can be seen as multi-valued trajectories over a 2-D graphical space. In the following, we elaborate
on such a conception in detail. Specifically, we consider the graphical space as a spatial model S
and the multi-valued trajectories as a function g : £ X7 — P(C) X E, where L X 7 represents
the spatial and temporal dimensions respectively, P () is the power set of C, representing a set of
functional components (e.g. buttons, images, input fields, etc.), and E denotes a set of behavioural
events (text-area focused, data retrieved, button clicked, etc). Below, we formalize each of these
elements.

3.1 Spatial Model

Graphical user interfaces assume the presence of a display for interacting with the user — this is the
case in all platforms, including the Web. Therefore, an intuitive interpretation of the 2-D graphical
space corresponds to a set of (x, y) coordinates that identify each pixel of the pixel-grid that composes
the physical display of the targeted device. More formally, we devise a spatial model S = (£, W),
where:

e [is a set containing all the logical locations the objects can occupy i.e., the pixels, identified
by the coordinate pairs £ = (x,y), with x,y € Z i.e., L = {(Xmin> Ymin)s --» (Xmax> Ymax) }

e W C [x L represents a proximity relation, such that an arc of the graph (£,4) € W if
the two locations are adjacent (i.e. given #; = (x1,y;) and £ = (xz,y2), either x, = x; + 1 or
Y2 =y = 1).

This formalization allows to describe the pixel grid as a spatial model where distances can be
efficiently computed by the L1/Manhattan definition (i.e. the distance between ¢; and £, on the grid
is expressed by |x; — x3| + |y1 — y2|). Observe that the spatial model does not necessarily need to
map exactly to the grid of physical pixels, and further representation optimizations can be defined
depending on the granularity of the specification under analysis.

In most cases, these areas correspond physically to fully-connected rectangular pixel grids. Recent
technological advancements are exploring different, more complex, layouts (e.g., circular screens
for smartwatches, dual-screen foldable devices, modular screens); the model presented can also
accommodate such layouts.

Recall the running example; requirements ER1 — ER3 entail checking the behavior including any
conditions that move a given Ul component in or out of the user’s focus. More generally in the
context of the web, three conceptually different areas of the screen should be represented:

(1) the document, which is the logical region over which the web page is defined throughout its
lifecycle; it contains all possible objects of the page, some of which may not be visible or
accessible by the user (e.g. an object at position x: -1000px, y: -1000px is not visible but it is
still computed and part of the page).

(2) the layout viewport, which represents the reachable area of the page. This is usually bigger
than the targeted display but can be accessed by users’ interactions (e.g., swiping or scrolling).

(3) the visual viewport, which is the region of the page that is displayed to the user at a given
moment. It usually corresponds to the inner frame of the browser window, or to the whole
display (when in full-screen mode).

Fig. 2 illustrates these areas for a hypothetical web page. A requirement like ER1 would translate to
the popup being in the visual viewport (3) until the user explicitly dismisses it.

, Vol. 1, No. 1, Article . Publication date: October 2025.

6 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

| deéserunt id ipsum, molestiae nihil nisi perspiciatis, |
- placeat quaerat qui quis reiciendis tempore veritatis -

Fig. 2. Example of a web page with a cookie consent notice. Colored boxes with solid borders
represent the different conceptual areas of the page. The cyan box (1) represents the overall document,
the box (2) shows the layout viewport and the red box (3) denotes the visual viewport.

3.2 Components and Events

First-class objects of a graphical user interface are components and events deriving from the user’s
interaction with them. Thanks to the standardization effort that has characterized the Web since its
conception, components are defined by developers utilizing the HTML standard, as published by the
Web Hypertext Application Technology Working Group (WHATWG).

< div class = “cookieInfo” > We use cookies to... < /div >

The previous line shows a typical implementation of the outer box of the cookie popup of Figure 2.
The div HTML element represents a generic container. In addition, the c1ass attribute cookieInfo
identifies it within a specific category defined by the developer, which may be associated with styling
instructions for the browser to display it appropriately. Such tags may be nested, forming a tree
hierarchy.

Standard web APIs provide a wide range of events fired by the browser engine when the user
interacts with the page®. Without loss of generality, we consider for presentation purposes the primary
browser events in E: click, focus, scroll, and load. Those are fired respectively when the user clicks an
element, selects an element, scrolls the page, and when the page loading is completed. The browsers
first interpret the page’s components, then attach styling rules, set behavior watchers, and render

30nly Document Object Model (DOM) events are considered as the reference API. Future iterations may also target the Web
Audio API and Animat ionFrame information to allow specifications on audio and video elements.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Automated Monitoring of Web User Interfaces 7

the final result to the user’s screen. We consider the set of components C to coincide with the set
of HTML elements present on a given web page. Typical elements are e.g., div that represents a
generic container and a that represents an anchor with a hyperlink (either to another section of the
page or to a different web page). In addition to them, we add to this set a pseudo-tag that we call
screen that acts as a container for all the elements that are present in the visual viewport. Given
the set of HTML elements C, a set of events fired by user’s interaction E, the trajectory of a page
in position (x,y) € £ and at time t € 7 is of the kind: g(x,y,t) = ({div, a, screen}, click), with
div, a, screen € C and click € E. Note that the event is the same in all the locations and there can
only be a single event at each time-step. Our approach includes all HTML elements, properties, and
events; we employ a subset in the paper to simplify the presentation.

3.3 Temporal Dimension

Any realistic analysis of a graphical user interface must take into account the dynamics of the
interface as the user interacts with it. This dynamics can be represented in various ways , resulting
in different notions of the temporal dimension 7 (a typical alternative approach is one based on
abstractions [17]). From the viewpoint of the user, changes that happen visually at a frequency higher
than the refresh rate of the screen (usually 60 Hz), are not perceived — most events typically occur
at much lower frequencies since users perceive a response as being instantaneous when happening
within 0.1s [41] and as such we consider interactions that receive a response within 1s. However, one
does not need to perceive events as occurring with respect to a refresh rate when analyzing web Uls,
in fact, the actual flow of events recorded by the browser’s engine can be considered instead: while
user interactions can happen at a high refresh rate (e.g., the user moves the mouse), only a few of
them trigger effects on the UI (e.g., when the mouse points over a clickable link). Such events fire in
the browser’s event loop, a standard HTML concept that guarantees synchronous recording of user
events [59], and can be accessed programmatically, employing a browser engine.

Whether we denote the time 7 as the ordered set of events = fy, ty, ..., t, that are recorded by
the browsers’ event loop, or by the continuous-time that is perceived by the user, we can assume
user interface changes as described by a piecewise-constant time signal, meaning that a Ul g can
be effectively analyzed at the time points ¢; of interest for the given specification. For example, a
prototypical temporal trace describing the evolution of the web page of Fig. 2 would be characterized
by a sequence that starts at t;, when the page is loaded and the spatial model is derived. After
a click event, a new time-point is generated representing the new state of the page. As such, the
temporal model expresses evolution based on user events. We will refer to graphical Uls and web
Uls interchangeably, as they are equivalent within our approach. The whole system is then described
by the spatial model and the trajectory. In our simple example, g(x,y, &) = ({div, a, screen}, load),
g(x,y,t1) = ({div, a, screen}, click) would define the spatio-temporal trajectory for two time-steps.

4 REASONING ON Ul TRAJECTORIES

To evaluate properties on the spatio-temporal trajectories of Uls, a specification language to express
meaningful properties predicating in both space (the UI) and time (the user behavior) is required.
The language we advocate is based on Spatio-Temporal Reach and Escape Logic (STREL) [38]. We
opt for describing the relevant features of the logic over the running example and the requirements
described in Section 2. For a complete formal treatment and semantics, the interested reader is
referred to [38]. A STREL formula conforms to the following grammar®:

@ = (atomic) | (boolean) | (temporal) | (spatial) 1)

4We simplify temporal and spatial operators by using ¢ and d to mean [0, ¢] and [0, d] respectively, in contrast with the
original logic using intervals to define these bounds, since we found them superfluous for our use cases.

, Vol. 1, No. 1, Article . Publication date: October 2025.

8 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

Atomic propositions. The basic building blocks of STREL specifications (Formula 2) for web
Uls are atomic propositions (or atoms), predicating on attributes of the page elements.

(atomic):= p o c|blid ~ f(p) 2)

These can be either (i) inequalities or equalities with respect to constants of interest or to some
other attribute value of the page elements i.e., y:=p o ¢ with o € {<,>,=, <, >}, or (ii) they can
be directly Boolean values in that location i.e., y:=b. For example, requirements ER1 — ER3 are
centered on the visibility of the cookie popup which is identified by the developers-defined class
cookieInfo. Note that in principle there could be more than one popup (e.g., a website could have
a small one at the bottom of the page and a big one at the center), yet the properties would still be
valid.
Uoisible = -cookieInfo$visibility =‘visible’. 3)
Formula 3 encodes that the visibility property of all the elements of class cookieInfo has the value
visible. To retrieve a specific element of the page in an atomic property, we adopt the standard
W3C selector notation [21], followed by the special character ‘$’ to denote the exact styling property
being analyzed. When appropriate for the specific formula, in line with [21], we will mark with : the
specific HTML state of the element (e.g. button : active to denote a property that is active — has
just been clicked). An example of Boolean atomic proposition is the screen property that is true
only in areas of the spatial model that are currently shown on the user’s screen — this property implies
specification of the pixels that belong to the visual viewport.

In addition to standard STREL atomic propositions, we introduce in Formula 2 a special set of
atomic propositions , i.e., id ~ f(p), where ‘~’ is the bind comparator. Such comparator captures the
first value satisfying the property selector ‘p’, it applies the function f to this value and stores it to
the identifier id. Subsequent references to the identifier id will be compared to the previously stored
value and evaluated to true only when the values are the same. Note that the binding value is captured
once throughout execution, and therefore serves as a parameter that is constant within the trace. With
such atomic propositions, values of interest useful in web Uls can be tracked and compared, e.g.:

p$color ~ specialColor
section$background-color ~ specialColor. (@]
The first to be satisfied among these two atomic propositions will set the value of the ‘specialColor’
identifier (to e.g., red), while the subsequent will be marked as not satisfying it when having a different
value (being e.g., black).
Boolean Operators. The basic operators one can use to express a specification are the ones of

classical logic (Formula 5) that represent respectively negation, conjunction, disjunction, as well as
the implication of some subformulae ¢.

(boolean):= =g o AploVele—e ®)
For example, in the context of a cookie popup, the requirement ER1 would be formalized as follows:
PERT = Hoisible N SCreen. (6)

Formula 6 states the basic condition that a popup must be visible and that at the same time or
location the screen property must hold. Therefore ER1 will be satisfied only in the areas of the
spatial model that are on the screen and have a visible popup.
The requirement ER2 would instead be formalized as
Hhidden = -cookieInfo$visibility =‘hidden’
¢er2 = (button.close : active — ppigden)- @)

Formula 7 expresses the behaviour related to clicking the closing button. In fact, when the button
element with class close is clicked (i.e., it becomes active), then (—) it must be invisible (‘hidden’).

, Vol. 1, No. 1, Article . Publication date: October 2025.

Automated Monitoring of Web User Interfaces 9

Temporal operators. To predicate about behaviour, temporal operators expressed in Formula 8
(temporal) := F; ¢ | G; ¢)

are used to express the fact that a subformula ¢ is satisfied for some (F;) - respectively for all (G;) -
next time points t, as in usual temporal logics. To illustrate that, consider ER3, which involves that
both ER1 and ER2 should hold within two seconds:

$ers = Fas ($ER1 A PER2)- ©)
oBpratiIP spiatewdaTidpredicate about the relative distance between elements of the space, spatial
(spatial) :== ©,0| @, ¢ (10)

are used to express the fact that a subformula ¢ is satisfied for some (®) - respectively for all (@) -
locations within a distance of d. Spatial operators enable a concise yet general way to express how
the user may access alternative elements; for example, the following formula describes that all accept
buttons must be at least 10 pixels distant from cancel buttons:

button.cancel — (@lopx—'button.accept) (11)
The logic comes with efficient monitoring procedures [38]. Given a STREL formula ¢, and the
pair (S, g), where S is a spatial model, and g : £ x T — P(C) X E a spatio-temporal trace, the
monitor computes a Boolean function, fs gy : £ X7 — B that returns the Boolean satisfaction’
of the property in each location at each time. This means that the Boolean function is equal to 1 in
location ¢, at time t, i.e. f(s gy (£, 1) = 1, iff (S, g(£, 1)), in location £ at time t, satisfies the property
¢, and 0 otherwise. The entire (S, g) satisfies ¢, i.e. (S, g) [¢ iff fis; = 1 for all locations and time
steps. When this is not the case, WEBMONITOR maps back to a screenshot of the page the failing
areas at the specific time steps when the properties fail, providing a visual counter-example.
Consider again the running example, and suppose we want to apply the monitoring algorithms
to formula ¢ggr,. Imagine a typical interaction flow on a device like the one of Fig. 2 at a 800x600
resolution, where, after the page has fully loaded, the user reads the cookie popup and grants
the related permissions. Such a sequence would generate a trace structured as such: g(x,y, t)) =
({screen, .cookieInfo},load) in the area where the cookie popup is visible, say between 20 <
x < 800, and 100 < y < 500; g(x,y, t)) = ({screen},load) for x < 800,y < 600, and g(x, y, to)
maps either to @ or to {.cookieInfo} in all other (x,y) exceeding the screen. After the button
is clicked, the event generates a new snapshot. Therefore, g(x,y,t;) = ({screen}, click) for any
x < 800,y < 600. Consequently, for ¢gg; the monitoring output will be (x,y, tp) = 1 only when
g maps to ({screen, .cookieInfo}, load), while B(x,y, t;) will always be 0 (since p,;sip. does not
hold anymore).

5 INSTRUMENTING WEB Ul MONITORING

Having discussed the underlying theoretical foundations, appropriate instrumentation is required to
be in place to realize an end-to-end solution. This refers to automating the interfacing with browsers,
generating spatio-temporal trajectories, and interpreting analysis output in a meaningful visual way.
Fig. 3 shows a dataflow diagram of WEBMONITOR. The overall process starts with a Web Source
as an evaluation target, which denotes a URL as well as auxiliary parameters required such as the
browser and screen size. Subsequently, the process can be considered as taking place in three stages:
e Tracking: The first stage of the WEBMONITOR workflow is responsible for the execution and
collection of the webpage data. The Web Source descriptor is used to launch a browser
session that will be used to fetch elements and events as described by the atomic propositions
found in the Spec. Possible interactions with the page must be injected at this stage, either by

5We use 1 and 0 in place of t rue, false to represent the Boolean interpretation, in line with [38], as the use of numbers is
more in line with the algebraic characterization of the semantics

, Vol. 1, No. 1, Article . Publication date: October 2025.

10

Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

: Tracking Process 1
: Web S
: .) Session Builder eb Seuree
Session Builder
Builds and starts a browsing session to Web Source
record data related to elements and Browser
events of the page. Session : Contains session
. . " : ttings, eg.:
Leveraging: Selenium WebDriver Tjepein%smigser
and screen size

Page Tracker

Web API
Collects the Ul data —
from the browser Process 2 Browser data
session. It exploits the
atomic propositions Page Tracker Element
defined in the spec to L
select the relevant
i and discard —_—
the rest.
Event
: Verifying
: Trace Builder Spec
Process 3
Converts the data gathered from the

page into a spatio-temporal trajectory. Trace Builder

Spec

At this stage, no web notion is
present anymore, and traces are built
based on labeled spatial boxes, for
each time point

Contains the definition of the
atomic propositions and of the
formula that constitute the
specification

Input Trajectory

Verifier

Process 4

Builds and runs a monitor to evaluate
the satisfaction of the provided spec
ove the given trajectory.

Verifier

Leveraging: Moonlight

Result Trajectory

. Reporting Plotter

Plots the result of the

Architectural Boundary

CI/CD Reporter

evaluation in target- T
specific terms. c Data Store
Builds a text-report for o
machine-based uses (=]
3
Process 6 Process 5
CI/CD Reporter Plotter : Process

1 Visual
| : | M2M report s

Data Flow

Fig. 3. Dataflow diagram including primary architectural boundaries of WEBMONITOR.

direct interaction with the page, or by using any related automation tool®. The concrete output
of this stage is a set of bounding boxes’ for each time-point; each box is labeled corresponding
to the identifier defined in the atomic proposition and has sizes corresponding to the computed
position by the browser. Selenium Webdriver® APIs are leveraged for the interaction with
web browsers, by using instructions that work interchangeably across browsers, and therefore
limiting to the W3C WebDriver standard [53].

o Verifying: The second stage is responsible for the actual analysis of the specification with
respect to the data collected at the previous stage. It starts via the Trace Builder that

SFor example automa.site or zennolab.com.
"DOMRect interfaces, drafts.fxtf.org/geometry/#DOMRect.
8selenium.dev

, Vol. 1, No. 1, Article . Publication date: October 2025.

automa.site
zennolab.com
drafts.fxtf.org/geometry/#DOMRect
selenium.dev

Automated Monitoring of Web User Interfaces 11

analyzes the collected data and the session settings, to generate a spatio-temporal multi-valued
trajectory of the kind described in Section 3. Then, the Verifier parses the provided Spec
to generate a monitor corresponding to the specification, and launches the evaluation on the
spatio-temporal trajectory. At the end of the verification process, a new artifact is generated,
which is the binary map of the satisfaction values of the specification, for every location and
time point of the trajectory. The specification classes and the monitoring facilities are provided
by the Moonlight” library for monitoring STREL formulae.

e Reporting: The last stage is responsible for delivering the results of the evaluation. This
may be manifested in two ways, faithful to contemporary processes within web application
development. The first is intended to integrate analysis within a typical developer workflow,
where a Plotter facility generates a figure highlighting the areas of the target screen
where the specification is violated. This represents the counterexample, as in classical model
checking, although it is extracted from the observed trace, corresponding to the exact event
that led to that incorrect state. The developer may revise the design accordingly and restart the
verification process. The second form of reporting functionality targets continuous integration
and continuous delivery (CI/CD) pipelines. To this aim, we employ a set of configuration
scripts that turn WEBMONITOR into a no-dependency tool, which can be adopted in any
environment, manifested as Github Actions that automatically run it on a given source and
specification, upon commits pushed. In this case, the Reporter facility generates a machine-
readable result of the evaluation, intended to be consumed by the appropriate pipeline stage
(e.g., among integration or other testing hooks), perhaps as a means for deciding whether or
not to deploy the application in production.

To use the advocated framework in practice, a developer follows four distinct steps:

(1) Initialization; a target web page is specified, along with parameters concerning browser and
screen size.

(2) Specification; requirements that the design should fulfill are specified via the logic outlined in
Sec. 4.

(3) Analysis; verification facilities are invoked.

(4) Reporting; in case of violation, the visual counterexample is inspected.

We note that our implementation is open-source software'” which can be found in accompanying
material along with an experiment reproduction kit. The reader interested in a more hands-on
perspective of WEBMONITOR’s usage can refer to the tool demonstration available at [57] or a video
tutorial !,

6 USAGE IN PRACTICE

We see WEBMONITOR as a foundational building block for a new generation of monitoring and
testing tools. As such, in this section we both present how the approach can be employed in practice,
both in terms of the DSL we developed to operate it, and also in terms of how it can be exercised to
support more sophisticated development scenarios.

6.1 WEBMONITOR’s DSL
WEBMONITOR has been designed to be accompanied from the beginning by a powerful domain
specific language (DSL) that simplifies its adoption in several contexts. The DSL is developed via the

9Moonlight STREL library github.com/MoonLightSuite/MoonLight.

10A snapshot version of the WEBMONITOR artifact with experiments replication package at the time of writing can be found
at: https://figshare.com/s/f0d63ddf60370098aac6

"Video demonstration of WebMonitor: youtu.be/hqVw0JU3k9c.

, Vol. 1, No. 1, Article . Publication date: October 2025.

github.com/MoonLightSuite/MoonLight
 https://figshare.com/s/f0d63ddf60370098aac6
youtu.be/hqVw0JU3k9c

12 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

Kotlin compiler, which allows us to provide a full-featured development experience out-of-the-box
when WEBMONITOR scripts are opened in IntelliJ IDEA (syntax highlighting, code completion,
documentation, error reporting, etc.) — from which the subsequent screenshots are taken — or any
other IDE supporting Kotlin’s DSL features. A WEBMONITOR’s DSL file is typically identified by
the extension .webmonitor.kts, which usually contains a few lines that identify the preamble
as in Fig. 4. The first line is a standard shell instruction, which is used to instruct the running
environment about the compiler to call (therefore, it is only required to run WEBMONITOR’s DSL
scripts as standalone shell programs). The second line informs the compiler about the version of the
WEBMONITOR library to load (this can also be omitted when WEBMONITOR is incorporated in an
ANT, Maven or Gradle project). Lastly, the third line loads the DSL, which allows the specification
to be written and parsed correctly.

@file:DependsOn("com.enniov
import com.enniovisco.dsl.*

Fig. 4. WEBMONITOR’s DSLs preamble.

Following the preamble, the developer needs to define the monitoring scenario, which is described
inamonitor {...} directive, andis composed of the Web Source and Spec descriptors introduced
in Sec. 5. The Web Source is identified by the webSource {.. .} directive, which contains the
session information of the scenario, as shown in Fig. 5. For most of the fields presented in Fig. 5,
sensible defaults are provided (e.g. the predefined browser’s window width and height), with the
exceptions of maxSessionDuration and targetUrl, which are the two pieces of information
always required by the developer, identifying, respectively, the maximal duration of the scenario, and
the URL of the web page to evaluate. The default browser is Google Chrome in normal mode, although
in several instances developers prefer the screen-detached version (denoted by the ~_ HEADLESS
suffix).

monitor {
webSource {
screenWidth =
nHeight =
~ = Browser.CH

Fig. 5. WEBMoONITOR’s DSL's Web Source specification.

Lastly, the Spec to analyze is identified by the spec { ...} directive, which is decomposed in
the following required instructions:

, Vol. 1, No. 1, Article . Publication date: October 2025.

Automated Monitoring of Web User Interfaces 13

atoms (...) which contains a comma-separated collection of atoms that can be used in the
specification. This directive informs WEBMONITOR about the elements of the document and/or their
related properties to track (see Fig. 6 for some examples of atoms). To facilitate the definition, the
following keywords are available to the programmer:

e select {...}:this keyword constructs an atom based on the CSS query selector that is
passed between the brackets. It is the minimal construct required to define an atom.

e read: given the previous CSS query selector, this optional keyword can be used to access
the value of a specific CSS property (e.g. background, visibility, ecc.) for the corresponding
elements of the page.

e equalTo (or other comparators): each time a CSS property is read, a comparator must be
provided, so that the atom can be properly evaluated to true or false. Several comparators are
already provided by WEBMONITOR (e.g. equalTo, greaterThan, lessEqualThan,
etc.). Alternatively, developers can define their own custom comparator that is appropriate to
the specific value being retrieved or the kind of properties they want to write.

record(...) contains a comma-separated collection of conditions that should trigger a new
retrieval of information on the page (see Fig. 6). They are identified by the after{ ...} keyword,
containing a string corresponding to the identifier of a standard web event to track (e.g. click, touch,
close, etc.).

formula = ... is the last instruction of a WEBMONITOR specification and denotes the
formula to monitor. It is often desirable to decompose the specification in subformulae (see Fig. 7).
The atoms are referenced in order of appearance in the atoms collection (see Fig. 6), the unary
operators wrap the subformulae in () °, and the binary operators are infixed.

monitor {

spec {

atoms(
select {
read
equalTo
select { i
select {

record(
after { "click" },
after { "touch" }

Fig. 6. WEBMONITOR’s DSLs Spec specification (first part): atoms definition and trigger events.

, Vol. 1, No. 1, Article . Publication date: October 2025.

14

Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

monitor 4

spec {

popupIsVisible = atoms[0]

subtitle = atoms[1]

closeButton = atoms[2]

erl = closeButton implies screen

er2 = not(popupIsVisible and subtitle)

formula everywhere(erl) and er2

Fig. 7. WEBMONITOR’s DSL's Spec specification (second part): helper and final formulae.

6.2 WEBMONITOR: exemplar workflows

A

developer can encompass WEBMONITOR in a wide range of scenarios to support specifying,

monitoring and testing. In the rest of this section, we present how it can be incorporated in traditional
development flow, while Sec. 7 will present a more complex use case for monitoring accessibility.

Regression Testing Workflow. We present here a workflow where WEBMONITOR is used as a stand-

alone regression testing facility, a typical scenario spanning common aspects of the development
process of an application.

(1) A user interface bug is found and reported by the Quality Assurance (QA) team or an end-user
(e.g., the button to close a popup is cut out from the screen).

(2) The developer based on details of the bug report writes a minimal Web Source (e.g. like the
one shown in the previous section) to load the page and reproduce the conditions of the
reported bug. Optionally, the developer might integrate WEBMONITOR in more complex
page-interaction tools, like Selenium[10], depending on how complex are the conditions to
reproduce the bug.

(3) The developer then proceeds to write a minimal Specification of the correct behavior (recall
Listing 1, which shows a possible way to formalise ¢gg;).

(4) Finally, the developer sets a continuous delivery pipeline (an example for Github Actions is
provided on the official repository'?), and at each commit to the shared repository, WEBMON-
ITOR is run against the provided web source and specifications, reporting a failure when the
specification is not satisfied.

Listing 1. Specification definition in WEBMONITOR DSL for a regression testing scenario.

spec {
atoms (
select { ".cookieInfo" } read "visibility" equals "visible"

12Relevant links and tutorials can be accessed at: github.com/ennioVisco/webmonitor

, Vol. 1, No. 1, Article . Publication date: October 2025.

github.com/ennioVisco/webmonitor

Automated Monitoring of Web User Interfaces 15

val isVisible = atoms[0]
formula = isVisible // Final formula

BDD Specification workflow. In this workflow WEBMONITOR is used as the tool to enable
Behaviour-Driven Development (BDD [42]) executable specifications of a new feature:

e The business experts/product owner come to the development team requesting a new feature:
supporting payments in the software product.

o At the start of the development sprint, the development team meets and discusses an informal
specification of the feature.

¢ In addition to the functional specifications, they decide that the following specification makes
sense for this feature: “in no case the button to execute the money transfer should be close to
other buttons” — to avoid inadvertently completing the transaction.

e Before developing the feature, one the developer takes the responsibility in formalizing the
specification, and writes the code shown in Listing 2, deciding that not close means that they
must be at least 20px apart.

e The new WEBMONITOR specification is added to the list of acceptance tests of the software,
and from now on, developers implementing the technical details of this feature will see the test
fail if this requirement is overlooked.

Listing 2. Specification definition in WEBMONITOR DSL for a BDD development scenario.

spec {
atoms (
select { "input[type=submit]" },
select { "button, input[type=button]" }
)
formula = atoms[0] (everywhere (not(atoms|[1])) 20)

6.3 User considerations

Formal specification and reasoning, despite their well-known effectiveness, are often not preferred
by developers [39], which are the intended users of our approach. We assume this to be the case also
and especially within web development. To use WEBMONITOR in practice, one needs to be familiar
with i) web technologies and ii) the STREL logic as outlined in Sec. 4. Observe that specifications
within our approach take place over CSS Selectors [21], a notation that the intended users in the
web context would be highly familiar with. This is a deliberate design choice in order to enable
faster learning; with CSS selectors developers can write specifications with the novel component
being solely the logic part. We further note the avoidance of introducing a new independent syntax
in WEBMONITOR, relying on the Kotlin DSL — the default language for e.g., Android apps or the
Gradle building tool.

We do acknowledge that formal requirements reasoning may pose difficulties — a concern quite
often raised within the formal methods community regarding adoption. Research efforts have
long pursued to bridge this gap from different angles, from specification patterns easing formulae
writing [36], to interactive requirements reasoning tools (notably e.g., FRET [20]) or via refining
specifications via high-level modeling techniques [28]. A promising direction is also outlined by the
efforts leveraging natural language processing (see [24] for a work translating a fragment of the logic

, Vol. 1, No. 1, Article . Publication date: October 2025.

16 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

we are adopting), or more recent Large Language Models’ aid in formal specifications (like in the
technical reports [1, 60]). We consider future integration of such formal requirements elicitation and
reasoning techniques as of having high potential in practice for WEBMONITOR.

7 EVALUATION

Utilizing the WEBMONITOR framework, in the following we demonstrate its usage in practice
over requirements sourced from widely-applicable web accessibility standards. Specifically, we first
describe how such regulatory requirements can be formalized. Subsequently, we showcase their
verification against an arbitrary webpage, illustrating the framework’s versatility in an end-to-end
manner. Finally, we present our experimental setup, illustrate the qualitative results obtained, and
conclude with a discussion.

7.1 WCAG2.1 Analysis Scenarios

Among the kinds of requirements a designer can express via our approach, international web
accessibility standards provide a natural source for general and widely applicable requirements
often overlooked because of the challenges that their analysis may require. The current practice for
verifying these requirements is via human-in-the-loop evaluations [26, 50] that reproduce as closely
as possible realistic interaction patterns of the final users. While these approaches are undoubtedly
beneficial, automation could cover many tasks without relying on specific hardware configurations.

The EU Web accessibility directive [13] (and Action 64 of the EU Digital Agenda), and similarly
the US Section 508 amendment [37] target the Web Content Accessibility Guidelines (WCAG
2.1) [15], a set of UI guidelines belonging in four principles — (Perceivable, Operable, Understand-
able, Robust). Often quite generic, they express desired abstract functionality and visual or structural
layout of web documents. We select ones amenable to automated visual Ul reasoning; thus, we ignore
other aspects, such as audio-related ones or captions in images, and ones that can be statically checked
for compliance (e.g., by directly inspecting the HTML source code, without the interpretation that a
browser implies). We treat WCAG as regulatory requirements and note that the source can be any
webpage — for demonstration purposes, we select the New York Times homepage'*, over which we
simulate several interaction patterns. We note that the proposed formalizations are indicative, as there
may be other equivalent ones.

Perceivable. This WCAG principle intends to assess that the information and user interface
components must be presentable to users in ways they can perceive. We focus in particular on the
following “reflow” [15] requirement.

(Reflow) Content can be presented without loss of information or functionality, and without requiring
scrolling in two dimensions for: (i) vertical scrolling content at a width equivalent to 320 CSS
pixels, and (ii) horizontal scrolling content at a height equivalent to 256 CSS pixels.

To formalize this requirement, we consider the primary fext-content HTML tags, i.e. paragraphs (p),

and seek to assess that their size is strictly below the indicated threshold for at least one of the two
dimensions, as captured in Formula 12.

(p$height < 320px) Vv (p$width < 256px) (12)

The perceivable principle of WCAG is the most extensive and covers many aspects of UI perception;
another important aspect is ensuring that tooltips and hoverable elements are working correctly, as in
the following “hover” [15] requirement.

(Hover) If pointer hover can trigger additional content, then the pointer should be able to be moved
over the additional content without the additional content disappearing.

13New York Times, https://nytimes.com

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://nytimes.com

Automated Monitoring of Web User Interfaces 17

Formula 13 captures a partial formalization of this more complex requirement. We encode this
property specifically for the source website considered; in such context, it is reasonable to require that
when an item (1i) of the navigation (nav) list is hovered (: hover) by a pointer, a .secondaryNav
element must appear within a half-second (Gy s,), somewhere around it (¢, px " in at most 1px of
distance).

(nav li:hover — Gg.559,,..secondaryNav) (13)

1px
Lastly, a key requirement — often posing difficulty for automated analysis — is one requiring a
contrast ratio between elements that allows the user to easily read the content:

(Contrast) The visual presentation of text and images of text has a contrast ratio of at least 7:1.

A possible formalization of this requirement is the one of Formula 14. In this case, we assign the
text color (color) of all the article titles (h3) within a container (div) to the identifier titlesColor,
and we require that when the titles have that color, the respective parents (div : has(h3)) have a
background color (background — color) that corresponds to a contrast-ratio of titlesColor, y
being a helper function comparing the relative contrast-ratio, according to the specification.

(div h3$color ~ titlesColor) A (14)
(div:has(h3)$background-color ~ y(titlesColor))

Operable. This principle refers to the ability of UI components and navigation to be operated easily
by the users. We focus in particular on the “three flashes requirement” [15].

(Flashes) Web pages should not contain elements that flash more than three times in any one-second
period.

To specify this requirement precisely, we consider elements changing display state rapidly, which in

the case of the target website is the real-time stock-exchange information block. Formula 15 encodes

this requirement, stating that when some stocks’ highlight (vgocks) 1S present on the screen, it must

not be the case that it subsequently disappears, and that, after it, a (possibly different) highlight

appears again.

Vstocks ‘= -masthead-bar-one-widgets div (15)
(screen A vgocks) — (=(Fo.55(=stocks A Fo.55 (Vstocks))))

Understandable. By understandable, the WCAG prescribes that a typical user must be able to
quickly deduce the relevant information and operations of the UL. We consider the following “focus”
WCAG requirement.

(Focus) When any component receives focus, it does not initiate a change of context.

We illustrate the formalization of this requirement as it applies to typical Ul elements: pop-up ads.
Formula 16 formalizes this requirement. Once popup ads appear (.welcomeAdLayout), users might
spend some time reading them, perhaps using the mouse pointer to guide their focus (hover). For as
long as this is the case (G), we expect the popup to stay visible.

VadPresent = -WelcomeAdLayout (16)

VadHovered := -WelcomeAdLayout:hover

VadHovered — Geo (VadPresent)

The presented Formulae 12-16 have been written with the goal of obtaining an evaluation trace,
allowing to see the exact time-point in which the property is not satisfied. When the intended usage
is to get a single truth value that summarizes the total satisfaction of the formulae in all time-points
(respectively pixels of the spatial model), a G (respectively @) should be put at the beginning of
all of them.

, Vol. 1, No. 1, Article . Publication date: October 2025.

18 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

7.2 Experimental Results

To utilize our approach in practice, the designer specifies the desired properties (Sec. 4, Sec. 6,
Sec. 7.1), and establishes the scope of the analysis by identifying the web source and the settings
of the browser session (browser engine, screen resolution, and maximum duration of the session,
Sec. 5). The workflow of Fig. 3 is then automatically performed. Experiments were conducted on a
(multi-threaded) Apple M1 Pro with 16GB RAM, using the Google Chrome browser engine.

Table 1. Experiment results on WCAG2.1 fragment analysis.

Spatial # affected # of Memory Execution

Size (px) elements Events | Peak (MB) Time (min)
Reflow 568x320 | 2 16 2470 1:24
Hover 568x320 |1 3 1070 22:25
Contrast | 568x320 | 266 3 600 2:31
Flashes | 568x320 | O 34 3800 1:52
Focus 568x320 |1 4 1500 0:43
Reflow | 800x600 | 2 15 2450 1:21
Hover 800x600 | 2 2 1300 20:55
Contrast | 800x600 | 375 3 927 3:19
Flashes | 800x600 | 1 30 3600 1:39
Focus 800x600 |1 4 1470 0:43

Table 1 summarizes the evaluation of the different WCAG requirements of Sec. 7.1, over different
screen resolutions (column “Spatial Size”). The spatial model targets two specific resolutions,
393x851 which is the resolution of the Pixel 5a smartphone, and 800x600 which used to be the most
common resolution among old monitors. The choice to target relatively old resolution configurations
is intentional within web Ul testing — they typically represent edge cases where modern designs fail,
and for that reason are subject to dedicated testing efforts. The proposed specification has been tested
with manual interaction when appropriate (e.g., moving the mouse over appropriate elements) and
with fimeout events between 300ms and 15s when considered useful for the specific property. Further
details about the tested trace are provided in the replication package. All experiments have been
conducted for a browsing session of the same exact duration of 23s, included in the final time of
Table 1. Different choices can be made taking into consideration specific user interactions with the
webpage. The central columns report the maximum number of page elements that have been affected
by a requirement during the evaluation of the trace (# affected elements) and the number of events
recorded throughout that trace (# of Events). The rightmost columns report the maximum resident
memory during the evaluation and the total execution time. These include all three stages of Fig. 3
— from session building and interaction with browser engines to verification and counterexample
generation, although we note that the Verifying stage of Fig. 3 — building and running a monitor
to evaluate the satisfaction of a provided property over the given spatio-temporal trajectory — was
responsible for almost the entirety of the execution time beyond the browsing session. Conversely, the
most memory-intensive operation is the counterexample generation, where results of the evaluations
performed are loaded into memory and combined with snapshots recorded by browser engines —
Fig. 8 shows a fragment of some visual counterexamples generated.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Automated Monitoring of Web User Interfaces 19

7.3 Discussion & Limitations

We believe to have demonstrated that by using our framework, powerful reasoning can be supported
over arbitrary web pages. From our experience, capturing such realistic regulatory requirements is
not trivial, especially taking into account the perspective of practitioners that would use our approach.
Specification aids such as patterns [36] or requirements elicitation and reasoning techniques [20]
would help in supporting the methodology — something which is a typical concern with formal
methods in practice. Extending such approaches to the web UI context appears quite promising. The
page analyzed for WCAG requirements — the New York Times homepage — satisfied most of them.
Somewhat surprisingly though, in certain cases the target page was not meeting the stated WCAG
requirements, as illustrated in Fig. 8.

While an exhaustive WCAG 2.1 characterization was out of the scope of this paper, a meaningful
portion of it has been formalized and analyzed over real-world pages and interactions. In terms of the
capabilities of the STREL logic for expressing the runtime requirements of interest, we found it to be
reasonably powerful. Most of the other rules of the specification fall into the following categories: (i)
minor variations of the analyzed ones, (ii) programmatically-determined (i.e., analyzable by scanning
the source code of the page, without the need of a runtime evaluation of the code) and (iii) media-
related (i.e., relating image, video, audio content, and therefore out of our scope). However, there are
cases where an exactly equivalent specification required some extra machinery (e.g., in Formula 14,
that required the special ~ comparator), or was unnecessarily complicated (e.g., Formula 15 has a
rough approximation of “flashing” as changing color within the subsequent half-second). It is worth
noting that while the proposed approach and tool are presented on a two-dimensional model and
make the hypothesis of a classical flat screen, there is in principle no limitation in considering more
dimensions and unusual layouts (e.g., like the ones observable in virtual or augmented reality).

Regarding performances (rightmost columns of Table 1), we observe that both the computational
time and memory usage seem suitable for the integration of complex specifications in a development
flow. A notable difference we observe in this regard comes from that adoption of spatial operators
(e.g., in the reflow property), which can have a significant impact on the overall computational time, in
line with the literature on spatio-temporal logics [38], but still resulting in reasonable times. We note
that the spatio-temporal models generated are quite sizable since each pixel corresponds to a spatial
node, yielding evaluation models with sizes in the order of hundreds of thousands of nodes (e.g.,
480K nodes and 2M edges for the 800x600 model). Recall that models are verified in an explicit-state
way. Nevertheless, with an increase in the number of nodes of 265% (from the mobile resolution to
the desktop analyzed), negligible differences can be observed between mobile and desktop memory
usage and computational time. This high efficiency in the analysis is the primary benefit of exploiting
the available algorithms for monitoring STREL formulae. Similarly, the high regularity of the spatial
model (a regular, homogeneous grid) allows for a high level of data locality during computation,
which is unprecedented in the traditional literature on STREL monitoring. A sizable memory penalty
comes from tracking multiple events for a given session. This is not surprising, as any event triggers
a snapshot of the state of the page which is then expanded into a full explicit-state representation of
the observed data, and possible counter-examples. Conversely, execution time is not significantly
affected. Therefore, when explicit counter-example generation is not needed, complex event traces
can be handled efficiently.

Concerning the number of affected elements and events (center part of Table 1), we observe
differences when a given property is monitored on mobile versus desktop. This is because the
analyzed website involves a significant number of decisions at runtime about the content to show
depending on the resolution of the navigating browser. We believe this motivates — even more — the
adoption of a logic-based specification language as it traditionally gives room to a large variety of

, Vol. 1, No. 1, Article . Publication date: October 2025.

20 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

Fig. 8. Visual counterexamples automatically generated following evaluation of Formula 12 (on the
left) and Formula 16 (on the right) for the New York times homepage for a mobile screen. The
counterexample shows in red areas where the formula yields false (the property is violated), and in
green areas where the formula evaluation yields t rue. In this case, the violation comes from the fact
that the text block is too long, resulting in unwanted cuts of the text (left), or in the popup disappearing
despite the user focusing it (right).

pre-condition definitions. Furthermore, a remark must be noted about the intrinsic effects of general
selectors (e.g., button) vs specific ones (e.g., .secondaryNav : nth — child(1)), and about simple
formulae (with 1-3 operators) vs complex ones (4+, mixing spatial and temporal). We noted that
general selectors and complex formulae often result in some performance penalty, but importantly,
they typically significantly reduce the understandability of counterexamples: it becomes harder to

, Vol. 1, No. 1, Article . Publication date: October 2025.

Automated Monitoring of Web User Interfaces 21

determine which element of the page (or part of the formula) is failing. On the other hand, they
typically correspond to more reusable and more compliant specifications, so this trade-off might lead
to different preferences depending on the user (e.g., external evaluator vs developers).

In conclusion, the advantages of our formal perspective in these kinds of specifications are very
appealing, as they can be defined and monitored regardless of the specific physical device being
used, the web framework adopted, or the actual browser that is running the browsing session — any
browser that implements the W3C WebDriver API is compatible. That said, a consideration about the
usability of our tool must be made: we provide a DSL that makes the adoption quite straightforward,
thanks to the CSS notation that we use for the atoms (which is familiar for web developers), to
the minimal syntax we introduce, and to the advanced tooling that complements WEBMONITOR.
Nevertheless, at this stage a background in formal methods can certainly speed up the adoption for
a developer, although we believe that the convenience of automating a large part of the translation
from the specification to the testing can be very appealing and motivate the effort. The idea of a
logic language that is close to natural language is also to support developments in the direction of
specification synthesis, possibly driven by state-of-the-art natural language processing techniques, as
briefly discussed in Sec. 6.3, where plain-English requirements are translated to a subset of formulae
of the logic language we are targeting.

8 RELATED WORK

This work introduces a novel approach for automating the analysis of graphical user interfaces by
monitoring spatio-temporal specifications. While the work can naturally be positioned along the
line sketched by the theoretical results of [47] that systematically analyzes formally web pages,
our focus is not on the document structure, but on its visual representation, or user interface (UI).
Recent approaches to UI testing, whether performed by exact match, like in [62], in Sikuli [61], or by
learning methodologies [18, 27] and genetic algorithms [33], are primarily analyzing image renders
of the pages. While image analysis can provide great insights regarding some accessibility aspects
like contrast ratios, it is not very helpful in cases where complex interaction patterns are present
or when analyzing a broad set of resolutions. Recent approaches to formal analysis of Uls do not
encompass runtime information. In [45], the authors use a similar browser-engine-based approach
to derive value bounds for a given attribute; in [63] from static analysis abstract traces are derived,
while [44] and [46] follow a component-based approach, avoiding to check the page as a whole.
In contrast to them, our work advocates browser-in-the-loop and is agnostic about the component
approach adopted by the developers. From the perspective of automated software testing, instead,
well-established tools like Selenium [10] and Cypress [43] provide a wide range of features to support
the precise crafting of Ul unit tests and multiple browsers[19]. However, they are not as effective
when integrating different components. Compared to these, our approach is on a different abstraction
level: it allows to express more abstract requirements (e.g., requirements for any paragraph) at the
expense of a higher computational cost.

Spatial (and spatio-temporal) logics historically emerged in the context of models of the physical
space [54], and STREL [38] is no exception. Alternative logics could be considered. SLCS [12]
proposes a topological approach, which allows for more abstract specifications. Conversely, TSSL [5]
introduces a more efficient quad tree-based modeling that could suit well the regular grids we are
addressing, despite, in that case, it serves the description of temporal evolutions. More expressive
logics like spatial p-calculus [32] could be a valuable alternative, although the computational
penalty might be prohibitive. Nevertheless, we claim that STREL provides a good balance between
expressivity (for the kinds of specifications we analyzed) and performance.

The declarative approach of logic-based specification of WEBMONITOR can resemble the one
developers are accustomed to in behaviour-driven-development (BDD [42]) and related approaches

, Vol. 1, No. 1, Article . Publication date: October 2025.

22 Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

to acceptance testing. The idea of BDD is to write executable specifications in natural language,
organized in some fixed structure. The issue with BDD though, is that the translation to executable
code is arbitrary and not necessarily consistent among the specifications. Approaches like [30] try to
automate part of the process by translating parts of the specification to temporal automata. Similarly,
[28] supports the formalization effort by enriching the BDD with semi-formal graphs developed by
users supported by experts. [52], instead, explores the idea of automatically generating variations of
a specification given a manually written one, as a form of lightweight model-checking. Our approach
looks to be quite in the middle of the spectrum between BDD and classical logic specification:
the user writes specifications in a richer DSL, but does not need to write any line of glue code
to transform the specification in executable code. Monitoring is a prominent runtime verification
technique, where a verdict is expressed by evaluating data traces describing single execution against
a formal specification. Moonlight [6] is a popular tool for spatio-temporal monitoring, which also
supports parallel execution of the monitors, a valuable option when in a multi-threaded execution
environment. Several alternatives could be considered. Since STREL is an extension of Signal
Temporal Logic, typical STL [34] monitors could be exploited, in particular lead/lag-bounded
transducers [35], RTAMT [40], and Breach [16]. However, we point out that while those tools
can provide efficient evaluation for temporal traces, they are not developed taking into account
evaluations depending on a spatial model, and would therefore require a significant amount of work
to reach comparable performances and expressivity. Alternatives worth mentioning are the ones
in the context of field-calculus [4, 48]. However, no comparison between spatio-temporal monitor
performances is available because of the different languages they address.

Systematically testing the accessibility of graphical user interfaces is a topic that has become
more prominent in the latest years, with several works [7, 8, 23] that have addressed the problem
from practical use-cases perspective. Several tools have emerged for this purpose. [51] made a
preliminary survey, although not focused on the web specifically. The W3C maintains a curated
list of accessibility evaluation tools [58]. Very recently, [25] established a set of requirements they
should satisfy, many of which are in line with the goal of WEBMONITOR. Finally, the adoption of
formal methods in CI/CD pipelines has not been extensively applied, although some use cases where
its adoption has proved to be beneficial are presented in [11, 29]. Conversely, automated Ul testing in
CI/CD pipelines is gaining interest [3], as tools for automating the interaction like TestComplete [2]
grow in maturity.

9 CONCLUSION AND FUTURE WORK

Guided by the crucial role that graphical user interfaces play for contemporary web platforms, we
introduced a novel approach to formalize and evaluate their spatio-temporal behaviors. We presented
the formal foundations and the development of the WEBMONITOR tool, a software framework
for automatic monitoring of STREL specifications of web pages, which encapsulates Moonlight
and Selenium WebDriver for the formal aspects and the interaction with the Web, respectively.
A continuous integration script and a facility producing visual counterexamples of requirement
violations assist the developer within the development workflow. We evaluated our approach over a
real-world target whereupon automated monitoring of requirements sourced from the latest WCAG2.1
standards was performed, illustrating its applicability. Finally, we investigated the verification
performance and possible advantages and disadvantages of a formal approach to web specifications
evaluation. The formal approach advocated in this paper is independent of the underlying technologies
a web application is developed with (e.g. React, PHP, or other) , as well as from the browser/operating
system in use — a stark difference from the state-of-the-art testing libraries.

We identify several avenues for future investigation. A first interesting direction is the one of
symbolic methods developed for traditional model checking [9], which could be adopted for the

, Vol. 1, No. 1, Article . Publication date: October 2025.

Automated Monitoring of Web User Interfaces 23

spatial fragment. Along the same line, a comparison of the expressivity with symbolic-based ap-
proaches could give better insights about the benefits and limitations of the approach. It would also be
interesting, in future works, to connect with the literature on page interaction, to provide an automated
end-to-end solution for pages testing. In terms of the performances, several possible optimizations
could be explored: firstly, the high level of spatial locality observed from the specifications over Uls
of this work might suggest (i) the adoption of more efficient algorithms, parallelizing the execution
over “far” areas of the screen, and (ii) efficient data structures can be used for compressing large areas
where a property is satisfied or violated (e.g. coarser grids of multiple pixels could be used to cut
computational time, or deciding the granularity of the grid at runtime, by analyzing the specification
to monitor). Additionally, another performance boost could come from more clever tessellations of
the spatial model, by changing it dynamically depending on the specification one wants to monitor.
Another possibility could be to have algorithms optimized to perform a lazy evaluation of formulae
maximizing the evaluation throughput so that a branch of the formula is only evaluated when the
other is not sufficient for providing a final verdict, or property-driven model slicing [55] can be
pursued. For the accessibility use-case investigated, perhaps alternative spatial logics could prove to
be more efficient without significant costs in terms of expressivity. Also, in the spirit of Google’s
User Experience (UX) web vitals [22], formal spatio-temporal reasoning can be adopted to precisely
quantify ranking metrics or alternative, developer-defined criteria. Lastly, while WEBMONITOR can
already be used in practice, a future investigation should assess how developers interact with it, and
collect crucial feedback to guide further improvement.

ACKNOWLEDGMENTS

This research has been partially supported by the Hellenic Foundation for Research and Innovation —
Project 15706 RVATHINGS, by the Austrian Science Fund (FWF) for the project “High-dimensional
statistical learning: New methods to advance economic and sustainability policies” (ZK 35), by MUR
PRIN project 20228FT78M DREAM (modular software design to reduce uncertainty in ethics-based
cyber-physical systems) and the consortium iNEST (Interconnected North-Est Innovation Ecosystem)
funded by the European Union Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza (PNRR)
— Missione 4 Componente 2, Investimento 1.5 — D.D. 1058 23/06/2022, ECS_00000043).

REFERENCES

[1] Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Ashvni Narayanan, and Anand Tadipatri. 2022. Towards a
Mathematics Formalisation Assistant using Large Language Models. ArXiv abs/2211.07524 (2022), 57 pages.
https://api.semanticscholar.org/CorpusID:253510131

[2] Samer Al-Zain, Derar Eleyan, and Joy Garfield. 2012. Automated User Interface Testing for Web Applications and
TestComplete. In Proceedings of the CUBE International Information Technology Conference (Pune, India) (CUBE '12).
Association for Computing Machinery, New York, NY, USA, 350-354. https://doi.org/10.1145/2381716.2381782

[3] E. Alegroth, A. Karlsson, and A. Radway. 2018. Continuous Integration and Visual GUI Testing: Benefits and Drawbacks

in Industrial Practice. In 2018 IEEE 11th International Conference on Software Testing, Verification and Validation

(ICST). IEEE Computer Society, Los Alamitos, CA, USA, 172-181. https://doi.org/10.1109/ICST.2018.00026

Giorgio Audrito and Gianluca Torta. 2021. Towards Aggregate Monitoring of Spatio-Temporal Properties. In Proceedings

of the 5th ACM International Workshop on Verification and MOnitoring at Runtime EXecution (Virtual, Denmark)

(VORTEX 2021). Association for Computing Machinery, New York, NY, USA, 26-29. https://doi.org/10.1145/3464974.

3468448

Ezio Bartocci, Ebru Aydin Gol, Iman Haghighi, and Calin Belta. 2018. A Formal Methods Approach to Pattern

Recognition and Synthesis in Reaction Diffusion Networks. IEEE Transactions on Control of Network Systems 5, 1

(2018), 308-320. https://doi.org/10.1109/TCNS.2016.2609138

[6] Ezio Bartocci, Luca Bortolussi, Michele Loreti, Laura Nenzi, and Simone Silvetti. 2020. MoonLight: A Lightweight
Tool for Monitoring Spatio-Temporal Properties. In Runtime Verification, Jyotirmoy Deshmukh and Dejan Nickovié
(Eds.). Springer International Publishing, Cham, 417-428.

H
e

—
-

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://api.semanticscholar.org/CorpusID:253510131
https://doi.org/10.1145/2381716.2381782
https://doi.org/10.1109/ICST.2018.00026
https://doi.org/10.1145/3464974.3468448
https://doi.org/10.1145/3464974.3468448
https://doi.org/10.1109/TCNS.2016.2609138

24

[7]

[8]

[9]

[10

[11

[12]

[13]

[14]
[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25

[26]

Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

Sebastian Bauersfeld and Tanja E. J. Vos. 2014. User Interface Level Testing with TESTAR; What about More
Sophisticated Action Specification and Selection?. In Post-proceedings of the Seventh Seminar on Advanced Techniques
and Tools for Software Evolution, SATToSE 2014, L’Aquila, Italy, 9-11 July 2014 (CEUR Workshop Proceedings,
Vol. 1354), Davide Di Ruscio and Vadim Zaytsev (Eds.). CEUR-WS.org, L’ Aquila, Italy, 60—78. https://ceur-ws.org/Vol-
1354/paper-06.pdf

Donald Beaver. 2020. Applied Awareness: Test-Driven GUI Development using Computer Vision and Cryptography.
CoRR abs/2006.03725 (2020), 9 pages. arXiv:2006.03725 https://arxiv.org/abs/2006.03725

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking without BDDs.
In Tools and Algorithms for the Construction and Analysis of Systems, W. Rance Cleaveland (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 193-207.

Andreas Bruns, Andreas Kornstadt, and Dennis Wichmann. 2009. Web Application Tests with Selenium. /EEE Software
26, 5 (2009), 88-91. https://doi.org/10.1109/MS.2009.144

Tien-fu Chang, Alejandro Danylyzsn, So Norimatsu, Jose Rivera, David Shepard, Anthony Lattanze, and James
Tomayko. 1997. "Continuous Verification" in Mission Critical Software Development. In Proceedings of the 30th Hawaii
International Conference on System Sciences: Advanced Technology Track - Volume 5 (HICSS ’97). IEEE Computer
Society, USA, 273.

Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink. 2014. Specifying and Verifying Properties
of Space. In Theoretical Computer Science, Josep Diaz, Ivan Lanese, and Davide Sangiorgi (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 222-235.

European Commission. 2021. Web Accessibility Directive — Standards and harmonisation. https://digital-strategy.ec.
europa.eu/en/policies/web-accessibility-directive-standards-and-harmonisation. Accessed: 2022-03-30.

California Senate Judiciary Committee et al. 2018. California Consumer Privacy Act: AB 375 Legislative History.
Michael Cooper, Alastair Campbell, Joshue O’Connor, and Andrew Kirkpatrick. 2018. Web Content Accessibility
Guidelines (WCAG) 2.1. W3C Recommendation. W3C. https://www.w3.0rg/TR/2018/REC-WCAG21-20180605/.
Alexandre Donzé, Thomas Ferrere, and Oded Maler. 2013. Efficient Robust Monitoring for STL. In Computer Aided
Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 264-279.
Matthew B. Dwyer, Vicki Carr, and Laura Hines. 1997. Model Checking Graphical User Interfaces Using Abstractions.
In Proceedings of the 6th European SOFTWARE ENGINEERING Conference Held Jointly with the 5th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Zurich, Switzerland) (ESEC '97/FSE-5). Springer-
Verlag, Berlin, Heidelberg, 244-261. https://doi.org/10.1145/267895.267914

Juha Eskonen, Julen Kahles, and Joel Reijonen. 2020. Automating GUI Testing with Image-Based Deep Reinforcement
Learning. In 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS).
IEEE, Piscataway, New Jersey, Stati Uniti, 160-167. https://doi.org/10.1109/ACSOS49614.2020.00038

Boni Garcia, Mario Munoz-Organero, Carlos Alario-Hoyos, and Carlos Delgado Kloos. 2021. Automated driver
management for Selenium WebDriver. Empirical Software Engineering 26, 5 (23 Jul 2021), 107. https://doi.org/10.
1007/s10664-021-09975-3

Dimitra Giannakopoulou, Anastasia Mavridou, Julian Rhein, Thomas Pressburger, Johann Schumann, and Nija Shi.
2020. Formal requirements elicitation with FRET. In International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ-2020) (Aeronautics ARC-E-DAA-TN77785). National Aeronautics and Space
Administration (NASA), Langley Research Center, Hampton VA 23681-2199, USA, 6 pages.

Daniel Glazman, John Williams, Tantek Celik, Peter Linss, Ian Hickson, and Elika Etemad. 2018. Selectors Level 3.
W3C Recommendation. W3C. https://www.w3.org/TR/2018/REC-selectors-3-20181106/.

Ilya Grigorik. 2020. Introducing Web Vitals: essential metrics for a healthy site. blog.chromium.org/2020/05/introducing-
web-vitals-essential-metrics.html. Accessed: 2021-12-16.

Michael D. Harrison, Paolo Masci, and José C. Campos. 2019. Verification Templates for the Analysis of User Interface
Software Design. IEEE Transactions on Software Engineering 45, 8 (2019), 802-822. https://doi.org/10.1109/TSE.
2018.2804939

Jie He, Ezio Bartocci, Dejan Nickovi¢, Haris Isakovic, and Radu Grosu. 2022. DeepSTL: From English Requirements
to Signal Temporal Logic. In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 610-622. https://doi.org/10.
1145/3510003.3510171

Nicola Iannuzzi, Marco Manca, Fabio Paterno, and Carmen Santoro. 2022. Usability and transparency in the design of a
tool for automatic support for web accessibility validation. Universal Access in the Information Society 1 (24 Nov 2022),
20 pages. https://doi.org/10.1007/s10209-022-00948-x

ISO Central Secretary. 2019. Ergonomics of human-system interaction —- Part 210: Human-centred design for
interactive systems. Standard ISO 9241-210:2019. International Organization for Standardization, Geneva, CH. https:
/Iwww.iso.org/standard/77520.html

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://ceur-ws.org/Vol-1354/paper-06.pdf
https://ceur-ws.org/Vol-1354/paper-06.pdf
https://arxiv.org/abs/2006.03725
https://arxiv.org/abs/2006.03725
https://doi.org/10.1109/MS.2009.144
https://digital-strategy.ec.europa.eu/en/policies/web-accessibility-directive-standards-and-harmonisation
https://digital-strategy.ec.europa.eu/en/policies/web-accessibility-directive-standards-and-harmonisation
https://doi.org/10.1145/267895.267914
https://doi.org/10.1109/ACSOS49614.2020.00038
https://doi.org/10.1007/s10664-021-09975-3
https://doi.org/10.1007/s10664-021-09975-3
blog.chromium.org/2020/05/introducing-web-vitals-essential-metrics.html
blog.chromium.org/2020/05/introducing-web-vitals-essential-metrics.html
https://doi.org/10.1109/TSE.2018.2804939
https://doi.org/10.1109/TSE.2018.2804939
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1007/s10209-022-00948-x
https://www.iso.org/standard/77520.html
https://www.iso.org/standard/77520.html

Automated Monitoring of Web User Interfaces 25

[27] Kateryna Ivanova, Galyna V. Kondratenko, Ievgen V. Sidenko, and Yuriy P. Kondratenko. 2020. Artificial Intelligence
in Automated System for Web-Interfaces Visual Testing. In Proceedings of the 4th International Conference on
Computational Linguistics and Intelligent Systems (COLINS 2020). Volume I: Main Conference, Lviv, Ukraine, April

23-24, 2020 (CEUR Workshop Proceedings, Vol. 2604), Vasyl Lytvyn, Victoria Vysotska, Thierry Hamon, Natalia Grabar,

Natalia Sharonova, Olga Cherednichenko, and Olga Kanishcheva (Eds.). CEUR-WS.org, Lviv, Ukraine, 1019-1031.

https://ceur-ws.org/Vol-2604/paper68.pdf

Benjamin Weyers Judy Bowen and Bowen Liu. 2023. Creating Formal Models from Informal Design Artefacts.

International Journal of Human-Computer Interaction 39, 15 (2023), 3141-3158. https://doi.org/10.1080/10447318.

2022.2095833 arXiv:https://doi.org/10.1080/10447318.2022.2095833

[29] Henrik Kaijser, Henrik Lonn, Peter Thorngren, Johan Ekberg, Maria Henningsson, and Mats Larsson. 2018. Towards
Simulation-Based Verification for Continuous Integration and Delivery. In ERTS 2018 (9th European Congress on
Embedded Real Time Software and Systems (ERTS 2018)). Hyper Articles en Ligne, Toulouse, France, 10 pages.
https://hal.archives-ouvertes.fr/hal-02156371

[30] Eun-Young Kang and Thiago Rocha Silva. 2023. Towards Formal Verification of Behaviour-Driven Development
Scenarios Using Timed Automata. In 2023 30th Asia-Pacific Software Engineering Conference (APSEC). 612—-616.
https://doi.org/10.1109/APSEC60848.2023.00081

[31] Michael Kretschmer, Jan Pennekamp, and Klaus Wehrle. 2021. Cookie Banners and Privacy Policies: Measuring the
Impact of the GDPR on the Web. ACM Trans. Web 15, 4, Article 20 (jul 2021), 42 pages. https://doi.org/10.1145/3466722

[32] Alberto Lluch Lafuente, Michele Loreti, and Ugo Montanari. 2015. A Fixpoint-Based Calculus for Graph-Shaped Com-
putational Fields. In Coordination Models and Languages, Tom Holvoet and Mirko Viroli (Eds.). Springer International
Publishing, Cham, 101-116.

[33] Gentiana Ioana Latiu, Octavian Augustin Cret, and Lucia Vacariu. 2016. Automated Graphical User Interface Testing
Framework—Evoguitest—Based on Evolutionary Algorithms. Springer International Publishing, Cham, 39-63. https:
//doi.org/10.1007/978-3-319-23392-5_3

[34] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of Continuous Signals. In Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant Systems, Yassine Lakhnech and Sergio Yovine (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 152—-166.

[35] Konstantinos Mamouras and Zhifu Wang. 2020. Online Signal Monitoring With Bounded Lag. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020), 3868—3880. https://doi.org/10.1109/TCAD.
2020.3013053

[36] Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and Thorsten Berger. 2021. Specification
Patterns for Robotic Missions. IEEE Trans. Software Eng. 47, 10 (2021), 2208-2224. https://doi.org/10.1109/TSE.2019.
2945329

[37] John Mueller. 2008. Accessibility for everybody: Understanding the Section 508 accessibility requirements. Apress,
London, United Kingdom.

[38] Laura Nenzi, Ezio Bartocci, Luca Bortolussi, and Michele Loreti. 2022. A Logic for Monitoring Dynamic Networks of
Spatially-distributed Cyber-Physical Systems. Log. Methods Comput. Sci. 18, 1 (2022), 30 pages. https://doi.org/10.
46298/lmes- 18(1:4)2022

[39] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon
web services uses formal methods. Commun. ACM 58, 4 (mar 2015), 66-73. https://doi.org/10.1145/2699417

[40] Dejan Nickovi¢ and Tomoya Yamaguchi. 2020. RTAMT: Online Robustness Monitors from STL. In Automated
Technology for Verification and Analysis, Dang Van Hung and Oleg Sokolsky (Eds.). Springer International Publishing,
Cham, 13 pages.

[41] JAKOB NIELSEN. 1993. Chapter 5 - Usability Heuristics. In Usability Engineering, JAKOB NIELSEN (Ed.). Morgan
Kaufmann, San Diego, 115-163. https://doi.org/10.1016/B978-0-08-052029-2.50008-5

[42] Dan North. 2006. Introducing BDD. Better Software Magazine. https://dannorth.net/introducing-bdd/ Accessed:

2019-03-18.

Narayan Palani. 2021. Automated Software Testing with Cypress. Auerbach Publications, Milton Park, Oxfordshire,

United Kingdom. https://doi.org/10.1201/9781003145110

[44] Pavel Panchekha, Michael D. Ernst, Zachary Tatlock, and Shoaib Kamil. 2019. Modular Verification of Web Page
Layout. Proc. ACM Program. Lang. 3, OOPSLA, Article 151 (oct 2019), 26 pages. https://doi.org/10.1145/3360577

[45] Pavel Panchekha, Adam T. Geller, Michael D. Ernst, Zachary Tatlock, and Shoaib Kamil. 2018. Verifying That Web
Pages Have Accessible Layout. SIGPLAN Not. 53, 4 (jun 2018), 1-14. https://doi.org/10.1145/3296979.3192407

[46] Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning for Web Page Layout. SIGPLAN Not. 51, 10 (oct
2016), 181-194. https://doi.org/10.1145/3022671.2984010

[28

[43

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://ceur-ws.org/Vol-2604/paper68.pdf
https://doi.org/10.1080/10447318.2022.2095833
https://doi.org/10.1080/10447318.2022.2095833
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2022.2095833
https://hal.archives-ouvertes.fr/hal-02156371
https://doi.org/10.1109/APSEC60848.2023.00081
https://doi.org/10.1145/3466722
https://doi.org/10.1007/978-3-319-23392-5_3
https://doi.org/10.1007/978-3-319-23392-5_3
https://doi.org/10.1109/TCAD.2020.3013053
https://doi.org/10.1109/TCAD.2020.3013053
https://doi.org/10.1109/TSE.2019.2945329
https://doi.org/10.1109/TSE.2019.2945329
https://doi.org/10.46298/lmcs-18(1:4)2022
https://doi.org/10.46298/lmcs-18(1:4)2022
https://doi.org/10.1145/2699417
https://doi.org/10.1016/B978-0-08-052029-2.50008-5
https://dannorth.net/introducing-bdd/
https://doi.org/10.1201/9781003145110
https://doi.org/10.1145/3360577
https://doi.org/10.1145/3296979.3192407
https://doi.org/10.1145/3022671.2984010

26

[47]

[48

[49]

[50]

[51

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60

[61]

[62]

[63]

Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

Seongbin Park. 1998. Structural Properties of Hypertext. In Proceedings of the Ninth ACM Conference on Hypertext
and Hypermedia: Links, Objects, Time and Space—Structure in Hypermedia Systems: Links, Objects, Time and Space—
Structure in Hypermedia Systems (Pittsburgh, Pennsylvania, USA) (HYPERTEXT ’98). Association for Computing
Machinery, New York, NY, USA, 180-187. https://doi.org/10.1145/276627.276647

Danilo Pianini, Mirko Viroli, and Jacob Beal. 2015. Protelis: Practical Aggregate Programming. In Proceedings of
the 30th Annual ACM Symposium on Applied Computing (Salamanca, Spain) (SAC ’15). Association for Computing
Machinery, New York, NY, USA, 1846-1853. https://doi.org/10.1145/2695664.2695913

Jenny Ruiz, Estefania Serral, and Monique Snoeck. 2021. Unifying functional User Interface design principles.
International Journal of Human—Computer Interaction 37, 1 (2021), 47-67.

Esteban Sdnchez and José A. Macias. 2019. A set of prescribed activities for enhancing requirements engineering
in the development of usable e-Government applications. Requirements Engineering 24,2 (01 Jun 2019), 181-203.
https://doi.org/10.1007/s00766-017-0282-x

Camila Silva, Marcelo Medeiros Eler, and Gordon Fraser. 2018. A Survey on the Tool Support for the Automatic
Evaluation of Mobile Accessibility. In Proceedings of the 8th International Conference on Software Development and
Technologies for Enhancing Accessibility and Fighting Info-Exclusion (Thessaloniki, Greece) (DSAI 2018). Association
for Computing Machinery, New York, NY, USA, 286-293. https://doi.org/10.1145/3218585.3218673

Colin Snook, Thai Son Hoang, Dana Dghyam, Michael Butler, Tomas Fischer, Rupert Schlick, and Keming Wang. 2018.
Behaviour-Driven Formal Model Development. In Formal Methods and Software Engineering, Jing Sun and Meng Sun
(Eds.). Springer International Publishing, Cham, 21-36.

Simon Stewart and David Burns. 2018. WebDriver. W3C Working Draft. W3C. https://www.w3.org/TR/webdriver/.
Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. 2017. Modeling and verification of evolving cyber-physical
spaces. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany)
(ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA, 38-48. https://doi.org/10.1145/
3106237.3106299

Christos Tsigkanos, Nianyu Li, Zhi Jin, Zhenjiang Hu, and Carlo Ghezzi. 2021. Scalable multiple-view analysis of
reactive systems via bidirectional model transformations. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (Virtual Event, Australia) (ASE "20). Association for Computing Machinery, New
York, NY, USA, 993-1003. https://doi.org/10.1145/3324884.3416579

European Union. 2016-05-04. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation). Official Journal L110 59 (2016-05-04),
1-88.

Ennio Visconti, Christos Tsigkanos, and Laura Nenzi. 2023. WebMonitor: Verification of Web User Interfaces.
In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (Rochester,
MI, USA) (ASE ’22). Association for Computing Machinery, New York, NY, USA, Article 170, 4 pages. https:
//doi.org/10.1145/3551349.3559538

W3C Web Accessibility Initiative (WAI). 2023. Web Accessibility Evaluation Tools List. https://www.w3.org/WAI/ER/
tools/. [Online; accessed 5-May-2023].

Web Hypertext Application Technology Working Group (WHATWG) 2022. HTML. Web Hypertext Application
Technology Working Group (WHATWG). https://html.spec.whatwg.org/multipage/webappapis.html#event-loop Living
Standard.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. 2023. Harnessing the Power of Large
Language Models for Natural Language to First-Order Logic Translation. ArXiv abs/2305.15541 (2023), 16 pages.
https://api.semanticscholar.org/CorpusID:258888128

Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: Using GUI Screenshots for Search and Automation.
In Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology (Victoria, BC, Canada)
(UIST ’09). Association for Computing Machinery, New York, NY, USA, 183-192. https://doi.org/10.1145/1622176.
1622213

Shengcheng Yu, Chunrong Fang, Yexiao Yun, and Yang Feng. 2021. Layout and Image Recognition Driving Cross-
Platform Automated Mobile Testing. In Proceedings of the 43rd International Conference on Software Engineering
(Madrid, Spain) (ICSE ’21). IEEE Press, Piscataway, New Jersey, Stati Uniti, 1561-1571. https://doi.org/10.1109/
ICSE43902.2021.00139

Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig. 2021. Checking Conformance of Applications
against GUI Policies. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing
Machinery, New York, NY, USA, 95-106. https://doi.org/10.1145/3468264.3468561

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://doi.org/10.1145/276627.276647
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1007/s00766-017-0282-x
https://doi.org/10.1145/3218585.3218673
https://doi.org/10.1145/3106237.3106299
https://doi.org/10.1145/3106237.3106299
https://doi.org/10.1145/3324884.3416579
https://doi.org/10.1145/3551349.3559538
https://doi.org/10.1145/3551349.3559538
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://html.spec.whatwg.org/multipage/webappapis.html#event-loop
https://api.semanticscholar.org/CorpusID:258888128
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1109/ICSE43902.2021.00139
https://doi.org/10.1109/ICSE43902.2021.00139
https://doi.org/10.1145/3468264.3468561

	Abstract
	1 Introduction
	2 Overview: web UI Monitoring
	3 Spatio-Temporal Models of web UIs
	3.1 Spatial Model
	3.2 Components and Events
	3.3 Temporal Dimension

	4 Reasoning on UI Trajectories
	5 Instrumenting web UI Monitoring
	6 Usage in practice
	6.1 WebMonitor's DSL
	6.2 WebMonitor: exemplar workflows
	6.3 User considerations

	7 Evaluation
	7.1 WCAG2.1 Analysis Scenarios
	7.2 Experimental Results
	7.3 Discussion & Limitations

	8 Related work
	9 Conclusion and Future Work
	Acknowledgments
	References

