
Noname manuscript No.
(will be inserted by the editor)

Model-Driven Engineering City Spaces via
Bidirectional Model Transformations

Ennio Visconti · Christos Tsigkanos ·
Zhenjiang Hu · Carlo Ghezzi

Abstract Engineering cyber-physical systems inhabiting contemporary ur-
ban spatial environments demands software engineering facilities to support
design and operation. Tools and approaches in civil engineering and archi-
tectural informatics produce artifacts that are geometrical or geographical
representations describing physical spaces. The models we consider conform
to the CityGML standard; although relying on international standards and
accessible in machine-readable formats, such physical space descriptions of-
ten lack semantic information that can be used to support analyses. In our
context, analysis as commonly understood in software engineering, refers to
reasoning on properties of an abstracted model – in this case a city design. We
support model-based development, firstly by providing a way to derive analyz-
able models from CityGML descriptions, and secondly, we ensure that changes
performed are propagated correctly. Essentially, a digital twin of a city is kept
synchronized, in both directions, with the information from the actual city.
Specifically, our formal programming technique and accompanying technical
framework assure that relevant information added, or changes applied to the
domain (resp. analyzable) model are reflected back in the analyzable (resp. do-
main) model automatically and coherently. The technique developed is rooted
in the theory of bidirectional transformations, which guarantees that synchro-
nization between models is consistent and well-behaved. Produced models can
bootstrap graph-theoretic, spatial or dynamic analyses. We demonstrate that
bidirectional transformations can be achieved in practice on real city models.

Keywords Bidirectional Model Transformations ·Model-driven Engineering ·
CityGML · Digital Twins

Ennio Visconti
Technische Universität Wien, Vienna, Austria

Christos Tsigkanos
Technische Universität Wien, Vienna, Austria

Zhenjiang Hu
Peking University, Beijing, China

Carlo Ghezzi
Politecnico di Milano, Milano, Italy

2 Visconti et al.

1 Introduction

Living spaces in the modern age are often complex spatial environments, char-
acterised by an interplay of physical and computational functionalities. Such
spaces host not only humans but also a wide range of computational devices
– from networking components to roaming robots. As such, the overall spaces
constitute complex and heterogeneous cyber-physical systems. Such is the case
not only within buildings but in large urban areas as well, with the prolifera-
tion of smart functionalities being deployed and having effects across cities. As
societies evolve and complexity grows, engineering complex systems support-
ing such spatial environments presents new challenges, where typical scenarios
are dominated by information from multiple domains and the need for assur-
ances regarding the overall systems’ behaviour. In the realm of smart cities, a
digital twin is a virtual model of a city – a model representation of the physical
world. This conception has emerged as highly useful to reason, visualize and
generally facilitate engineering of city-wide cyber-physical systems involving
layered data sources of buildings, urban infrastructure, utilities, movement of
people and vehicles.

Systems operating within smart environments are space-dependent, cyber-
physical systems, whose development demands software engineering support
facilities that span their lifecycle, from design to operation. Engineering can
be enabled with model representations of their spatial environment [61]; such
representations can be sourced from domain models originating in other disci-
plines such as civil engineering and architectural informatics. Naturally, those
disciplines are dominated by their own practices, tools, and domain knowledge.
Design tools and approaches within them produce artifacts which are geomet-
rical or geographical representations describing physical spaces, such as build-
ings or cities. Although relying on international standards and accessible in
machine-readable formats, such physical space descriptions [21, 34] often lack
semantic information that can be used to support their analysis as normally
intended in computer science, something which hinders their consideration for
software-intensive, composite cyber-physical systems.

The models we consider conform to the CityGML [18] standard which also
encompasses buildings (Building Information Models – BIM [44]), widely used
in practice for domain descriptions, for which numerous real-world models
are becoming available [24]. The overall system inhabiting a physical space,
specified by such a CityGML description, may need to satisfy certain quality
attributes demanding particular kinds of reasoning – think of an architect or
urban planner reasoning on the accessibility of green spaces in a city. The
design may also change due to the composite system’s development cycle –
for example, a transportation expert may seek to analyze an emergency evac-
uation scenario in the same city, by placing agents in the analyzable model
and evaluating their behaviour. Note that multiple such views may be derived
from the same design depending on different analyses sought. We stress the
fact that domain models of interest are rarely simple; they may range from
small buildings to large and complex metropolitan cities.

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 3

We aim to support engineering throughout design and operation: firstly, by
providing a way to derive analyzable models from spatial descriptive models
(i.e., CityGML/BIM) – model-based techniques can then be readily employed
on the derived models; secondly, by ensuring that changes performed on an-
alyzable models are propagated back to source domain models in a correct
manner. The analyzable model is thus a digital twin of the city: the twin
should always be in sync with the events and new information coming from
the actual city. Given the informational asymmetry between the two different
types of models, properly synchronizing them is not trivial.

Like in all asymmetric information scenarios, in fact, the synchronization
process involves decisions informed by external (and reliable) sources of in-
formation, which, if not carefully selected might hinder the correctness of
the whole process. In our specific context, for example, analyzable model
changes might impact other elements when mirrored in the more concrete
world of CityGML objects. When performing some operations to synchro-
nize two models, the transformation is deemed correct if they are consistent
(i.e., some equivalence relation is defined between the information contained
in them) [28].

Regarding this synchronization, the typical case is naturally the forward
direction, i.e., deriving models from the rich CityGML descriptions and sup-
porting their analysis. However, more advanced use cases require support-
ing the backwards direction – from the abstract model back to the original
CityGML description. Such cases may be found within adaptive system work-
flows, where some automatic procedure would changing the abstract model
and subsequently reflecting changes on the domain model.

A characteristic case is system runtime, where an analyzable model may
need to be kept alive while the system is operational and populated with
contextual or environmental information through monitoring. For example, a
digital twin of a city can be maintained at runtime for emergency response.
Subsequently, analysis performed on the model kept at runtime can provide
insights or serve as input to planning processes, which may perform corrective
actions in order to satisfy system requirements. Insights that analysis pro-
duces or changes that planning actions demand, can be synchronized with the
richer domain model. Consider planning routes of ambulances within emer-
gency response; those may need to be e.g., visualized upon the domain model.
However, planning solutions may include inducing road closures, thus changing
the model structure.

The idea is to use exactly the same spatial domain models used by prac-
titioners to represent urban areas, buildings and city spaces and project from
them some abstract and more computationally convenient representation, which
can be transformed back to the original one when needed. The analyzable
models we target are formally modeled topological structures –cyber-physical
spaces [62]– enjoying well-defined semantics, where formal reasoning can be
performed.

Our proposed formal programming technique assures that relevant infor-
mation added, or changes applied to the domain (resp. analyzable) model are

4 Visconti et al.

reflected back in the analyzable (resp. source domain) model automatically
and coherently. The technique developed is rooted in the theory of bidirec-
tional transformations, which guarantees that synchronization between mod-
els is consistent and well-behaved. Thus, our key contribution is a technical
framework based on bidirectional model transformations to support engineer-
ing of space-dependent systems. The novel bidirectional reflection facilities we
provide for domain and analyzable models can be readily used to (i) derive
models from spatial models occurring in practice, since CityGML models of
cities are widely available, and (ii) instrument model-based development. Our
framework’s concrete realization is available as open source software1.

To provide concrete evidence of the proposed model-based approach, we
demonstrate that transformations can be achieved in practice on real city
models. The present paper extends [67] in the following ways; (i) the principal
technical enhancement is the concrete realization of the bidirectional transfor-
mation, (ii) the role of domain-specifics and the application policy is further
elaborated, and (iii) evaluation is expanded to illustrate edge cases of interest
to practical applications, over an additional real-world city model.

The rest of the paper is structured as follows. Section 2 provides necessary
background, and outlines design goals and challenges. Section 3 describes the
design of a bidirectional transformation between city models and analyzable
models. Section 4 presents tool support, while Section 5 provides an assessment
of the proposed approach over three case studies of real cities. Lastly, Section 6
gives an insight of related work in the field, and Section 7 concludes the paper.

2 City Space Models and their Representation

Engineering cyber-physical systems inhabiting spatial environments can be en-
abled with the latter’s model representations. Spatial environment descriptions
are typically found in other engineering disciplines such as civil engineering,
architectural informatics or architecture. We consider such spatial environ-
ment descriptions as source, domain models. Specifically, we adopt the ones
used by practitioners to represent city-wide spaces (i.e., CityGML), since they
also encompass buildings. In this section, we first briefly describe our source
models, before succinctly defining the models we target, serving as the digital
twin of the city. Those models are analyzable, enjoy well defined semantics,
and can be used for model-based engineering purposes.

2.1 CityGML Descriptions as Source Models

CityGML as virtual 3D city models, have been widely adopted in a grow-
ing number of scenarios including urban planning, emergency management,
traffic noise simulation, navigation systems, urban solar potential estimation,
or visual communication [14, 51]. CityGML is playing a major role, given

1 Topocity is available at https://topo.city.

https://topo.city

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 5

its ability to combine both thematical and spatial representations, in pro-
gressive levels of details [18, 34]. Figure 1 illustrates elements that can be
represented in CityGML. The CityObject class plays a central role in the
specification, as it defines the basic thematic properties that are extended
with package-specific information. Each CityGML model has a CityModel

at its root, that typically contains a multitude of instances of CityObject,
through the cityObjectMember relationship. All CityGML objects extend the
Feature class of the GML language. Subclasses represent objects in some

specific domains, like buildings, rivers, streets, traffic lights etc. For a com-
plete description of CityGML capabilities, the interested reader can refer to
the specification [18].

An interesting aspect of CityGML is the flexibility it introduces, by pro-
viding a way of defining Application Domain Extensions (ADEs), in which
application requirements related to the city models can be described, while
the enriched model still complies to the specification [13]. ADEs are formally
defined extensions, specified in XML Schema Definition or Unified Modeling
Language, capable both of adding new properties to existing CityGML classes
and of adding entirely new classes and data types. For example, an ADE can
be a set of extra attributes and elements nested into a standard CityGML
model, to extend the capability of CityGML buildings in order to fully sup-
port Building Information Modeling descriptors; this extension would affect
the AbstractBuilding class of Figure 1 by extending it with new attributes
related to BIM features. This also includes adding extra elements within the
ADE, which reference standard CityGML objects and describe new relation-
ships among them. These extensions can be arbitrary, ranging from geometrical
aspects like shadow orientation, to process-specific, like safety escape paths.
More than 40 ADEs have been developed so far, with purposes including noise
propagation, energy distribution, spatial topology, and time variation among
others. Despite being valuable information sources, CityGML models’ volume
and domain orientation make it challenging to consider them for complex anal-
ysis and operation, requiring extensive application-specific preprocessing and
postprocessing. CityGML models often include highly detailed information
which may be irrelevant for certain types of analyses – for example, physical
material properties of buildings are irrelevant for transportation analysis of a
city. In such a case, application-specific pruning of information would need to
be performed, in order to “project” the model into a transportation-analyzable
view, pruning away unnecessary information.

Our technical framework has been designed under the idea of automati-
cally migrating changes to the standard CityGML thematic features, shown
in Figure 1, and a given ADE. To the best of our knowledge, despite the many
CityGML ADEs available, neither tools nor data are readily accessible for any
of them as of today and therefore, a preprocessing step is still needed in order
to prepare the source information describing application-specific relationships,
by referencing objects of the original city model. In the next section, to simplify
the discussion, we will assume functions key() and children() are properly
defined with the purposes of providing a unique identifier of the CityGML

6 Visconti et al.

_CityObject

+ creationDate: xs::date [0..1]
+ terminationDate : xs::date [0..1]
+ relativeToTerrain : RelativeToTerrainType [0..1]
+ relativeToWater : RelativeToWaterType [0..1]

CityModel

gml::_FeatureCollection

gml::_Feature

luse::LandUse dem::ReliefFeature

veg::_VegetationObject

frn::CityFurniturewtr::_WaterObject

gen::GenericCityObject

_Site tran::_TransportationObject

grp::CityObjectGroup

bldg::_AbstractBuilding tun::_AbstractTunnel brdg::_AbstractBridge

cityObjectMember
*

*

Fig. 1: Partial view of CityGML 2.0 top level class hierarchy, adapted from [18].
Elements in italic and with a leading “ ” represent abstract classes – with-
out an explicit XML representation. Prefixes delimited by “::” when present,
mark elements that belong to specific packages. Packages names comply to
the CityGML naming convention recommended by the specification. Figure
elements comply with the definition of thematic features as per ISO 19109.

feature and retrieving a list of sub-features respectively. Note that these func-
tions don’t exist in this form in the standard, but GML unique identification
features and CityGML’s hierarchical structure can easily serve for this goal.

2.2 Cyber-Physical Spaces as Target Models

The analyzable models that we target are topological structures termed cyber-
physical spaces (CPSp’s [62]) whereupon formal reasoning can be performed.
Such structures are the digital twin representation of a city. We opt for this

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 7

generic graph-based target model because of (i) its flexibility and applicability
to various types of analyses and (ii) its formal semantics, allowing for a pre-
cise definition of the correctness of a transformation. CPSp’s are graph-based
representations of relations inherent in a space, which may span physical or
computational barriers. This allows increased expressive power to represent
complex systems and their interaction with active agents which may include
devices, humans, software components or infrastructure.

Their formal semantics have been given in terms of bigraphs [42], a process
meta-calculus consisting of two superimposed graphs. Such dynamic semantics
are quite similar to graph transformation systems. For the formal semantics
– which are not covered in this paper – the interested reader can refer to the
vast body of literature on the topic [42]. Scoped to our framework, bigraphs
can be described in terms of the following components:

– A set of labelled nodes v ∈ V which represent the elementary objects of the
environment. In the following we will consider them as labelled with a pair
(identifier, type) , and we assume that a key(v) function returning the
label is properly defined. In additon, we suppose that findNode(k, S) is a
function that returns a node v from the set S labelled with k.

– A place graph is a forest, i.e., a set of rooted trees defined over nodes;
this graph captures the notion of containment (nesting) of nodes. Given
the structure of CityGML models, we can slightly simplify the discussion,
considering that the containment relation develops from a single root rep-
resenting the CityModel and, thus, the forest degenerates to a tree. In this
perspective, we refer to child(n) for a node that has n as a parent in the
containment relationship.

– A link graph is a hypergraph defined over the same set of nodes. Hyper-
edges link any number of nodes; this graph represents generic links (i.e.
many-to-many relationships) among nodes. Subsequently, we suppose that
a proper function, similar in principle to findNode(k, S), is available to find
the links connecting a given node. Place and link graphs are orthogonal,
and edges between nodes can cross locality boundaries.

Bigraphs allow to achieve both the level of expressiveness needed by key
topological characteristics and a high level of flexibility: the place graph defines
a hierarchical structure, allowing to capture locality in space of the city objects
in terms of topological nesting, while the link graph can represent arbitrary
connections among nodes (i.e., some other topological relation), enabling the
representation of application-specific relations. Note that our choice of target
model is not binding – bigraphs as used within our approach amount to general
graphs with specific properties – transformation to other structures can be
defined as well. However, expressing topological characteristics in terms of
nesting of nodes and arbitrary relations as connections between nodes and
names fits particularly well. For example, a bigraph node representing a city
block, may contain a number of building nodes – this is represented through
nesting. A reachability relation expressing that “one can walk from a block

8 Visconti et al.

to another via a connecting road”, can be captured in the model with a link
connection between two block nodes.

We refer to our target models as analyzable, since they enjoy well defined
semantics, and can be used for automatic verification of desired properties of
the overall design of the system in a formal and systematic way, as is typi-
cal in software engineering. The bigraphical representation we utilize can be
integrated [31] with mainstream technologies for Model-Driven Engineering
(MDE) [15,57], typically based on the EMOF standard [27]. In the following,
we identify three major classes of analyses that may be bootstrapped by our
target models.

Graph-theoretic analyses. By working on a topological representation of
labelled vertices and edges, typical graph-theoretic analyses can be enabled on
the city design, something which is not possible on the source CityGML model,
which includes topology-irrelevant information. Analyses benefiting from this
abstraction step to a graph may include route and network flow problems (e.g.,
for transportation analysis), graph coloring or partitioning (e.g., for spatial
coverage or environmental analyses).

Advanced spatial analyses. Besides fundamental graph-based properties of
the city design, more advanced requirements can be specified with spatial logics
and evaluated on the analyzable models produced by our approach, referring
to its topology and structure. Those can include quantitative aspects [12],
which are automatically reflected on the analyzable model (such as distances
in the city captured on edges, e.g., on the link graph). Furthermore, orthog-
onal information sources (such as sensing data) may be integrated [65]. The
expressiveness that spatial logics enjoy can enable specification of properties
that capture complex requirements to be evaluated on the design, while eval-
uation is performed with spatial model checking procedures. A characteristic
case of a reachability analysis within a city will be illustrated in Section 5.

Dynamic analyses. Dynamics may be integrated in the analyzable model
in order to capture ways the topology may change over time. Firstly, this
may reflect design edits (e.g., possible operations that a designer performs
on the city space), in the context of supporting design-time exploration of
different design alternatives. Secondly (and more typically), change may refer
to modelled actions by agents placed on the design aiming to analyze some
complex behavior of the system [61]. In such cases, the analyzable models we
target allow translation to other modeling formalisms, depending on the kind
of analysis sought [62]. Typical examples of this are state-transition models
supporting various forms of model checking [10,17].

2.3 Synchronization: Design Goals and Challenges

In our view, model-based engineering of cyber-physical space-dependent sys-
tems should adhere to the following design principles, which underlie our design
of a bidirectional transformation between the two models:

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 9

1. Interoperability with well-established domain-specific standards and data
models, namely CityGML and BIM as used in practice;

2. Provision of an actionable representation of the model in a non-domain-
specific language that can enable complex analysis.

3. Automatic composition of changed and unchanged parts of the model in a
suitable way (i.e., well-behaved transformations), highly pertinent to both
support of design activities as well as runtime model operations;

4. Decoupling of independent levels of reasoning (such as topological from
geometrical) whenever possible, since those can be considered as being on
different levels of abstraction.

We note that the biggest challenge in synchronizing a highly detailed CityGML
model (originating from domain-specific tools and practices) and an analyz-
able model (crafted for representing high-level application-specific features in
terms of topological relations), relies in keeping the consistency between the
two asymmetric sources of information in both the ”forward” direction (i.e.,
the abstraction process) and the ”backward” – or ”putback” – one (i.e., the
reification process). It is particularly the putback direction that needs special
attention, since it requires new information to be generated, in order to fill
missing details and produce a meaningful and consistent result in terms of
practitioners’ knowledge. In the following, we illustrate how the above chal-
lenges may be tackled by designing and implementing a consistent and well-
behaved bidirectional transformation between source and analyzable models
which, by design, properly propagates changes when either one of the models
is modified.

3 Bidirectional Transformations of City Space Models

To address the problem of migrating information from one representation to
another, there needs to be a clear definition of which parts of an object of the
source representation have a correspondence to an object of the target rep-
resentation. In other words, we have to define a correspondence between the
two objects. This is typically referred to in literature as the ”consistency re-
lation”, among two (or more) sources of information [25]. In the following, we
first succinctly describe the laws underlying our transformation and the for-
malization of the consistency relation. We sketch the algorithms implemented
for consistency enforcement in our framework and lastly discuss some issues
and limitations of the putback strategy in our approach.

3.1 Consistency Specification

Bidirectional transformations (BX) is a development methodology for main-
taining a consistency relation between models, which can be expressed in terms
of lenses [25]. More precisely, let S be our source city model and V our view

10 Visconti et al.

(i.e., a target model), we call lens a pair of transformations (get, put). The for-
ward transformation get(S) is used to produce a target view V from a source
S, while the putback (or backward) transformation put(S, V) is used to reflect
updates of the view V to the source S. In our case, we say the lens is asym-
metric because the source model has more information than the view one. A
pair of get and put should be well-behaved, in the sense that it satisfies the
following round-tripping laws:

put(S, get(S)) = S GetPut
get(put(S, V)) = V PutGet

The GetPut property requires that no changes in the view reflect as no
changes in the source. The PutGet property requires that all changes in the
view should be assimilated by the source so that the changed view can be
re-computed by applying the forward transformation to the updated source.

Concerning the models we investigate, let S be a CityGML model and V
a bigraph, the consistency relation between them can be formally specified in
the following way. For ∀s, s′, s′′ elements and r relationship of S, and ∀v, v′, v′′
nodes of the bigraph V , s and v are synchronized (s
 v) if they have the
same keys (key(s) = key(v)) and the following conditions hold:

A.1 instanceOf (s, CityObject) ∧ instanceOf (v ,Node);
A.2 (isContained(v, v′)↔ childOf (s, s ′)) ∧ s ′
 v ′;
A.3 (isLinked(v, v′′)↔ holds(r , s, s ′′)) ∧ s ′′
 v ′′.

Within the above conditions, the predicate instanceOf guarantees an ob-
ject is of the specified type, allowing A.1 to define a basic level of correspon-
dence between an element of the source and one of the view. A.2, on the other
hand, by means of childOf , which expresses the parent-child relationship of
CityGML elements, and of isContained , which represents the containment re-
lation of bigraphs, defines a mapping between two relations defined on different
element types. Lastly, with A.3, we aim to represent an application-specific
mapping: isLinked represents the linking in bigraphs, while the predicate holds
captures both the presence of a relationship in the CityGML ADE and the
fact that its application-related meaning, somehow, holds.

We may say that a source model is place-consistent with respect to a view
model if both A.1 and A.2 are satisfied. Likewise, we may say that it is
link-consistent (w.r.t. a view model) if A.1 and A.3 are satisfied. When a
source model is place-consistent and link-consistent at the same time, then it
is consistent (i.e., the models are synchronized). Place-consistency has been
fully formalized and therefore it can always be checked without ambiguity. This
means that in no case we can have, for example, a road inside a building or
similar irregular cases which are not allowed by the CityGML specification. On
the other hand, link-consistency cannot be in principle solved unambiguously,
since it is application-specific. This not-completely formalized approach is not
new in BX literature, since, in some cases, local correctness checks (also called
black-box operations) are needed in order to achieve consistency [58].

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 11

3.2 Consistency Enforcement

The three conditions presented express, in progressive levels of consistency,
that S and V are synchronized. We now present two algorithms carrying out
the checks and activating the repairing procedures for guaranteeing consis-
tency. Note that we are only describing the repairing procedures in the put-
back direction (i.e., the Put transformation): the description of the forward
direction (i.e., the Get transformation) can be derived from it by substituting
the repairing actions with some proper projection actions. It will be, in fact,
automatically generated (in Section 4).

Algorithm 1 encompasses the first stage of the synchronization logic, where
starting from the root of the city model and the outermost node of the view
model, it traverses the two structures and repairs the differences by adding or
removing the needed nodes at the correct position of the city model. Thus, at
the end of its execution, the source model will be place-consistent with respect
to the view model (i.e., conditions A.1 and A.2 hold).

Algorithm 1 Place Consistency Enforcement

procedure placeC(s :: CityObject, v :: Node)
(cs, cv) := alignLists(s.children, v.children)
for all (s′, v′) ∈ (cs, cv) do

if v′ is null and s′ is not null then
/* No matching view node: the source object must be removed */

REMOVE(s, s′)
continue -- Can jump directly to next iteration

end if
if s′ is null and v′ is not null then

/* Unmatched view node: a new source object must be added */

s′ := ADD(s, v′)
end if
/* Continue over children */

placeC(s′, v′)
end for

end procedure

Conversely, Algorithm 2 describes the second stage of the synchronization.
It starts as well from the root of the two models. However, it makes the as-
sumption that the model is already place-consistent and therefore has the only
goal of repairing relationships between objects. To do so, it loops on pairs of
relationships and bigraph links. If one of the two does not exist, the repairing
procedure is activated. Otherwise, a further check is performed to verify that
the relationship and the link reference the same elements. If this check fails,
the repairing procedure is triggered. The same logic is mapped to the children
nodes and continues down to the last nodes. At the end, the source model is
link-consistent (i.e., A.3 holds).

Lastly, in both Algorithms 1 and 2, procedures in uppercase represent
Application Policy actions, which play an essential role in the transformation

12 Visconti et al.

Algorithm 2 Link Consistency Enforcement

procedure linkC(s :: CityObject, v :: Node)
(rs, ls) := alignLists(fetchRels(s), fetchLinks(v))
for all (r, l) ∈ (rs, ls) do

if r is null or l is null then
/* Unmatching link/relationship: source must be updated */

UPDATE(s, rs, ls)
break

else
(ss, vs) := alignLists(r.objects, l.nodes)
for all (s′, v′) ∈ (ss, vs) do

if s′ is null or v′ is null then
/* r and l are not referencing the same objects/nodes */

UPDATE(s, rs, ls)
break -- they are now, move on

end if
end for

end if
end for
/* Continue over children */

(cs, cv) := alignLists(s.children, v.children)
for all (s′, v′) ∈ (cs, cv) do

linkC(s′, v′)
end for

end procedure

and are hence discussed in the next section. Illustrated functions show the
functionality of the transformations in a high-level manner, and it is worth
noticing that they can be executed, in the worst case, in O(n2m2). We defer
implementation details to Section 4 and a more detailed complexity analysis
of the algorithms presented to Appendix B.

3.3 Dealing with Domain-Specifics

Algorithms 1 and 2 are designed to satisfy the consistency conditions. However,
it must be noted that albeit A.3 specifies the consistency between CityGML
relationships and graph links formally, it provides no precise information about
how to implement the holds predicate. The reason for this choice is to keep
a general approach to the transformation; in fact, the information needed
to satisfy it might not even exist, since this part of the transformation is
heavily application-dependent. In principle, the reification strategy for new or
removed objects may greatly vary depending on the purpose of the specific
object and application scope and requirements. For example, removing a link
that connects two buildings might mean, in one case, that the road between
them is physically blocked, while in another, that moving between them is
prohibited.

Application Policy is the component appointed for ultimately verifying that
task. Since different applications are likely to require different policies, the
Application Policy is an external component, interacting with our framework

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 13

through clearly scoped interfaces called actions. Actions can access a limited
set of information in order to achieve their goal, and they are required to
produce an output that does not break previous assumptions.

The following actions have been defined:

– ADD(s :: CityObject, v :: Node) :: CityObject,
which is bound to generate missing objects of the source. To that extent,
it has access to all the information available from the parent of the target
object s. It can also change the representation of the parent (this is needed
in some applications, e.g., for keeping spatial-semantic coherence).

– REMOVE(s :: CityObject, s′ :: CityObject),
which symmetrically to ADD has the purpose of removing extra children
from the parent s. It has access to the same information with the same
constraints .

– UPDATE(s :: CityObject, rs :: [CityADERelationship], ls :: [Link])
is the most general action, responsible for both updating ADE relation-
ships and potentially changing the representation of the current object.
The problem of correctly reflecting a set of links may be very hard to solve
in general. For this reason, our framework makes two simplifying hypothe-
ses. Firstly, we assume that a change in a relationship (or the definition
of a new one) can be fully expressed in terms of separated updates to the
objects corresponding to the different nodes of a link. Secondly, we assume
that the information required to address this task is limited to the subgraph
of nodes and links related to the current one.

To understand the generality and, thus, the complexity inherent in UPDATE,
consider a scenario in which we have two touching buildings – A and B –
in the view model. A reasonable change could be, for example, to remove
the touching relation between them and add a new one between B and C.
Such an edit could be reflected in the original model in many different ways:
a straightforward option could be to change the position of those objects.
Another option could be to change the position of all the objects in the city
to satisfy the new requirement. Our framework can currently only deal with
cases of the former, since the latter changes the model so significantly that
it results in a completely different one, potentially triggering an endless loop
of breaking-repairing operations in other areas of the model. For an example
highlighting this, the interested reader may refer to Appendix A. The extent
to which both these interfaces and their underlying assumptions are limiting
is still a matter of active investigation.

4 Topocity: Bidirectional Transformations Implementation

Having presented the classes of models of interest (Section 2), and the round-
tripping laws guaranteeing well-behavedness over which a consistency relation
is defined (Section 3), in this section, we illustrate Topocity2, the BX frame-

2 Available at https://topo.city or github.com/ennioVisco/topocity

https://topo.city
github.com/ennioVisco/topocity

14 Visconti et al.

work reflecting the transformations. Specifically, we present different aspects
of our framework, starting from a broad picture of both internal and external
components of Topocity, core points of the implementation and, finally, mak-
ing some usage considerations. We adopt a functional approach to deal with
transformations since they are often indeed defined in terms of functions. More-
over, this choice leads to a natural integration with the BiGUL [32,33] library,
which is a putback-based BX language developed as a Haskell domain-specific
language. The primary strength of BiGUL is that, in contrast with other BX
techniques, it is designed to automatically derive the get direction of the trans-
formation, given the put. This means that developers have to implement just
the backward/putback transformation from the view to the source, and the
forward one is derived for free.

Topocity’s main components are shown in Figure 2; its modular design
allows for external component development and integration. Naturally, func-
tionality revolves around two models, a source CityGML description as input,
and a bigraph view representing the CPSp as output. Thus, we present Topoc-
ity components over the functional layers traversed in getting from one model
to the other, as shown in Figure 2.

CityGML
+

ADE

Cyber-
physical
model

HXT
XML Parser & Printer

citygml4hs
Data-binding

Abstraction &
Reification
Interface

Place-Graph BX
BiGUL Program

Link-Graph BX
BiGUL Program

Application
Policy

Topocity framework

Fig. 2: Architectural components and dataflow of Topocity. Dotted boxes
represent external components.

– HXT. Haskell HXT3 is adopted for handling the XML-formatted CityGML
source files in Haskell. HXT’s abstract approach allows the choice of dif-
ferent parsers depending on the context, and couples them with the appro-
priate printers automatically.

3 HXT – https://intern.fh-wedel.de/~si/HXmlToolbox/.

https://intern.fh-wedel.de/~si/HXmlToolbox/

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 15

– citygml4hs.4 A library providing an API for CityGML, implementing
functionalities of the reference citygml4j library to Haskell. It provides
a full semantic typed data structure, along with basic helper functions
like the key method previously described. While this component is not
crucial in terms of the strict requirements of the transformation, it plays
an essential role in terms of non-functional requirements, since it provides
an actionable representation easily exploitable by third-party software.

– Abstraction & Reification Interface. This component delivers a com-
mon representation of citygml4hs types. The underlying idea is that instead
of building a separate BX for each object type of the source, it implements
automatic algebraic transformations to generate a more abstract represen-
tation starting from the source, which can be easily converted back to the
original format.

– Place-Graph BX. The first sweep of the synchronization process imple-
ments Algorithm 1 in BiGUL, i.e., synchronizing nodes and the place graph
with the source.

– Link-Graph BX. The second sweep of the synchronization process makes
use of BiGUL primitives to implement Algorithm 2. In contract with the
previous algorithm, it synchronizes only the link graph with the source. We
note that this process may be quite complex depending on the convolution
degree of the link graph.

– Application Policy. The primary container of the framework’s API ac-
tions implements the Application Policy functionality of Section 3.

4.1 Key Implementation Points

In the following, after basic data types definition, we elaborate on the key com-
ponents of Figure 2. We adopt a functional style for conciseness; the interested
reader may refer to the online appendix for further details.

4.1.1 Data Types

Recall the CityGML class hierarchy of Figure 1: the transformation frame-
work should address those data types. In particular, we adopt a data struc-
ture CityObject (Listing 1), with a direct correspondence between CityGML
classes. The structure – part of the citygml4hs component of Section 4 – is
accompanied with certain helper functions providing an actionable represen-
tation that synchronization (or other external components) may utilize. For
example, note that the CityObject structure not only uses a different type for
each kind of city object (thus allowing implementing type-filtering selection),
but also provides an Identifiable class providing a unique ID for the object
(if possible) by considering the identifier hierarchy defined in the CityGML
specification.

4 github.com/ennioVisco/citygml4hs is maintained by the authors as open source soft-
ware.

github.com/ennioVisco/citygml4hs

16 Visconti et al.

data CityObjectMember = Site Site

| Veg VegetationObject

| Gen GenericCityObject

| Wtr WaterObject

| Tran TransportationObject

| Dem ReliefFeature

...

deriving (Read, Show, Eq, Data, Generic, Identifiable)

Listing 1: citygml4hs core implementation of CityObject.

However, to reduce the complexity of the transformation, the Abstraction
interface transforms it into the following, more practical data structure:

type AbsCity = (NTree AbsCityNode, [AbsRelation])

type AbsCityNode = (UID, (NType, NData))

type AbsRelation = (UID, (NType, [AbsCityNode]))

Listing 2: ADT of city data.

UID, NType and NData are strings representing the identifier, the object
type and the internal data of each object respectively, while NTree is just an
n-ary ordered tree data structure, commonly used in Haskell. As it should
be apparent from the types, the idea of this intermediate representation is to
rearrange the predominant features of interest in a structure of pairs of the
kind (head, tail), convenient for subsequent processing. Finally, the output
data structure representing a bigraph is shown in Listing 3.

type BiGraph = (PlaceGraph, LinkGraph)

type LinkGraph = [BiGraphEdge]

type PlaceGraph = NTree BiGraphNode

type BiGraphNode = (UID, NType)

type BiGraphEdge = (UID, (NType, [BiGraphNode]))

Listing 3: Bigraph ADT.

The similarities between this and the previous definition should be quite
evident. This structure is equivalent to the previous, except for having dropped
the NData field. That is in fact the primary difference between the two struc-
tures, since the bigraph is a projection that only selects a subset of the in-
formation. In principle, however, other differences could be introduced, for
example city object types and bigraph node types as different datatypes.

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 17

4.1.2 BiGUL Programs

We have seen that the source and the view can be rearranged in a similar
way without any irreversible (i.e., lossy) transformation. Our objective now
becomes to migrate the information from one part to the other while keeping
the correspondence as defined in Section 3. Concerning Condition A.1, we de-
fine the equivalence relation of Listing 4. The check1 function checks whether
a predicate defined on two trees is true up to the first level of the subtree,
which in our context entails a check of whether the keys of both the root and
the children of the two trees are the same (by applying (= N =) on them). In
this way, it is certain that when the equivalence holds, it pertains to the same
object.

equiv :: AbsCityTree -> PlaceGraph -> Bool

equiv a b = check1 (=N=) a b

(=N=) :: NTree (UID, a) -> NTree (UID, b) -> Bool

(=N=) a b = tKey a == tKey b

tKey :: NTree (UID, a) -> UID

tKey (NTree d _) = key d

check1 :: (NTree a -> NTree b -> Bool) -> NTree a -> NTree b -> Bool

Listing 4: Equivalence relation between s and v.

Place-Graph BX. The equivalence of Listing 4 is directly exploited by the
Place-Graph BX, illustrated in Listing 5, which encodes Condition A.2; the
implementation utilizes the Template Haskell notation used by the BiGUL lan-
guage. We refrain here from presenting the details of the language; the inter-
ested reader may refer to [29] for a precise understanding of BiGUL constructs,
or to [33] for proof of its correctness. Intuitively, the Case[•] BiGUL operator
resembles the switch/case construct of procedural languages: it takes a list5 of
pairs of the kind (pattern, operation), where each pair describes a branch. The
idea is that if the function parameters match the pattern (defined by $(•)),
then the operation after the ==> is performed. Note the normal keyword: it is
the equivalent of a procedural case having a break at the end, while adaptive
corresponds to a case after which, if matched, the program continues check-
ing against subsequent patterns in the list. Intuitively, the adaptive branch
verifies that both the current element and the children have the correct ID.
If this is not the case, then there might be new or missing nodes in the view,
and therefore, the syncChildren function will align the two lists by exploiting
Application Policy actions to create/remove nodes in the source. Conversely,
the normal branch activates each time both the source tree children and the
view tree children have the same id. When this happens, source types become
the ones of the view, and the syncTree procedure is mapped to the children.
This operation is executed recursively on all the children.

5 lists are enclosed in [] in Haskell.

18 Visconti et al.

syncTree :: BiGUL AbsCityTree PlaceGraph

syncTree = Case

[$(adaptive [|\s v -> not (equiv s v)|])

==> \s (NTree vcs) -> syncChildren s vcs

, $(normal [| equiv |] [| noCond |])

==> $(update [p| NTree (i, (t,)) cs |]

[p| NTree (i, t) cs |]

[d| i = Replace; t = Replace; cs = align |]

)

]

Listing 5: Place graph BX.

Link-Graph BX. After having enforced Conditions A.1,A.2, the procedure
synchronizes the last part of the bigraph (i.e. the links). The procedure, illus-
trated in Listing 6 does this in a way not dissimilar from the previous one. The
careful reader might recognize that syncGraph operates on different data types
than the ones presented in Listings 2 and 3; AbsTopology and AbsHypergraph

are alternative representations of [AbsRelation] and LinkGraph respectively,
indexed on nodes instead of relations/edges. The reason for this choice is the
assumption that it is more convenient to loop over nodes instead of edges,
since, edges might not have a physical representation, but can indeed affect
the way the nodes are represented as city objects. Note the syntactical sim-
ilarity with the place graph BX of Listing 6; the only difference is that the
procedure does not compare nodes but links defined on them, and takes action
when a mismatch is found. The policy action, represented as p, corresponds
to the UPDATE action presented in Section 3. Observe that UPDATE is not ac-
tivated on a single object but upon a subgraph. This graph is composed of
the current node and the set of links (with corresponding nodes) defined on it
and intends to provide a representation of the corresponding city objects that
satisfies the set of constraints the links define. The procedure terminates with
a CityGML model that is syntactically consistent with the current bigraph
and semantically meaningful if a proper Application Policy is in place. If so,
also Condition A.3 holds and the two models are consistent.

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 19

syncGraph :: BiGUL AbsTopology AbsHypergraph

syncGraph = Case

-- If the graphs are different, update source by using policy p

[$(adaptive [|\(NTree (, ls)) (NTree (, ls’))

-> not (ls ‘equivLink‘ ls’) |])

==> \s (NTree (, vls)) -> p s vls

-- else, replace the data and map the algorithm to children

, $(normal [|\(NTree (, ls)) (NTree (, ls’))

-> ls ‘equivLink‘ ls’ |]

[| noCond |])

==> $(update [p| NTree ((i, (t,)) , ls) c |]

[p| NTree ((i, t) , ls) c |]

[d| i = Replace; t = Replace;

ls = align2; c = (align p) |]

)

]

Listing 6: Link graph BX.

4.2 Topocity Usage

To use Topocity6 in practice, one is required to provide (i) a CityGML source
data model and (ii) a suitable Application Policy. CityGML models may be
obtained per-application; note that for building models, existing software (e.g.,
Autodesk) already allow the export of drawing objects as CityGML. Reposi-
tories of CityGML city models are also available7. Regarding the Application
Policy, a plain one is provided by the framework by default, upon which defi-
nition of another may be bootstrapped.

Subsequently, to perform transformations, one follows these simple steps:

1. Loading of the source model (which is the pair of a CityGML and CityGML
ADE description) by calling e.g., load(city.gml, ade.gml).

2. Generation of a CPSp target model (i.e. perform the get transformation)
by calling get(source).

3. Generation of an updated source model (i.e. perform the putback transfor-
mation) by calling put(source, view).

4. Storage of the new source model by calling store(filename.gml).

5 Evaluation

The general goal of this paper is twofold. On the one hand, we aim at giving
architects, civil engineers, and professionals of the field the ability to exploit the

6 For installation and example usage, the interested reader is referred to topo.city.
7 Examples include TU Delft models of Dutch cities https://3d.bk.tudelft.nl/

opendata/3dfier/; the TU Munchen model of New York https://www.lrg.tum.de/gis/

projekte/new-york-city-3d/; North Rhine-Westphalia models https://www.opengeodata.
nrw.de/produkte/geobasis/3d-gm/. An extensive list is available at [24].

topo.city
https://3d.bk.tudelft.nl/opendata/3dfier/
https://3d.bk.tudelft.nl/opendata/3dfier/
https://www.lrg.tum.de/gis/projekte/new-york-city-3d/
https://www.lrg.tum.de/gis/projekte/new-york-city-3d/
 https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/
 https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/

20 Visconti et al.

power of modern model-driven engineering techniques when designing next-
generation environments. On the other hand, we aim at giving engineers the
ability to develop cyber-physical systems without the hurdle of dealing with
massive amounts of unnecessary information or domain-specifics.

Our approach and technical framework address these problems by ex-
ploiting the BiGUL language in synchronizing CityGML data sources with
application-oriented graph representations [41]. The synchronization process
enforces the consistency relation defined in Section 3, in the way described
in Section 4. In the following, we present three characteristic case studies
that illustrate different aspects of engineering software systems inhabiting city
spaces:

– While iterating within a design cycle, architects and building professionals
make changes upon a design. Being able to validate decisions is crucial
in assessing the quality of their design. Topocity enables deriving an
analyzable model automatically from a domain-specific one. This model
reflects all the changes of the original CityGML one, but in a domain where
automatic analysis tools are readily available, as is typical in the model-
driven engineering literature. We illustrate this by considering a reference
problem from the civil engineering domain: the planning of the layout of a
construction site, precisely the problem of positioning a tower crane.

– Decision making with constrained resources and in limited time, is typical
at runtime settings, where information is monitored from the environment.
However, in many applications such decisions are non-trivial and require
proper evaluation of contextual information. Analyzing a model of the en-
vironment becomes key to provide critical insights or to support planning
processes. Topocity can reflect updates to an analyzable model of the
CityGML source so that they can be combined with other data sources.
We illustrate this characteristic case by examining an emergency response
scenario in a large city area.

– Whether at runtime or design time, other non-functional concerns may
arise; the most obvious one is the relation between model size and trans-
formation performance. We investigate this issue by showcasing different
cases at the extremes of the spectrum: given a model of the city of Vienna,
we point out the efficiency of the transformation. To vary model size in a
controllable manner, we control the density of bigraph links over the same
model.

The cases we consider are reference problems for our evaluation purposes:
each of them is representative of how bidirectional transformations can play
a primary role in the engineering of systems inhabiting city spaces, enabling
separation of concerns between different domains. We stress that in the three
evaluation cases considered, models come from real and public CityGML data
sources of, respectively, a district of Remscheid (North Rhine-Westphalia, Ger-
many), Flat Iron Street in New York (NY, USA) and the city of Vienna (Aus-
tria). We conclude with a discussion.

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 21

5.1 Facilitating System Design: Tower Crane Positioning

Proper optimization of construction site layout is key to efficient construc-
tion activities. Before construction starts, site layout planning provides the
necessary equipment and temporary facilities for the construction process, in-
cluding allocation and dimensioning of elements like tower cranes, containers
or storage areas. Decisions taken during this planning phase have direct im-
pact on cost development and occupational safety on site during construction.
Positioning of tower cranes is an important exemplar [2, 30]. Recent litera-
ture has provided techniques to automate the solution of this task, where two
critical issues have been identified: (i) the lack of a simple but formal lan-
guage capable of expressing rules, standards and best practices to check a
building model [53], and (ii) the absence of tools able to perform this kind of
operations by exploiting BIM/GIS descriptions like CityGML models, so that
meaningful solutions can be found before implementation takes place [30]. In
the following, we demonstrate how a flexible solution can be designed in which
our framework plays a central role.

We consider an hypothetical construction site to be placed in a district
of the city of Remscheid, North Rhine-Westphalia, Germany. For the real
CityGML models we rely on North Rhine-Westphalia open data [71] – the link-
ing structure related to tower crane positioning is designed ad-hoc, since this
step could be easily generalized and reproduced by modern user-guided CAD
software [49]. Figure 3 shows the most relevant part of the model generated by
our framework; an extra object and extra links are shown, corresponding to
the changes made to the cyber-physical space in order to elicit the topological
requirements for the new tower crane. Advanced analysis and model process-
ing to generate such changes can take into account topological information
in the analyzable model, such as proximity of construction site elements or
complex relationships in the space layout, positioning the crane in a manner
that satisfies some occupational safety or optimal placement requirements. As
we are concerned with model transformations only, we consider such reasoning
facilities as out of scope for this paper.

Once the target model is updated reflecting some reasoning (e.g., identify-
ing the optimal position of the crane), changes have to be reflected back to the
original model. To this end, Topocity takes care of identifying changed ob-
jects and prompts the Application Policy to provide the 3D shape of the tower
crane and spatial coordinates. For our case study, this was a fixed position,
but a policy can specify arbitrary alternatives, from random to user-defined
positioning, depending on the kind of links defined. Once those are given,
Topocity identifies the place in the original source hierarchy to arrange the
new objects and reifies the model back again to the CityGML description.

Figure 4 shows a fragment of the original model and the final result as
visualized CityGML descriptions. Note how certain reachability links between
edges of three buildings are additionally defined, supposing these are buildings
of interest for the construction site (Figure 3).

22 Visconti et al.

CityModel
LoD2_369_5668_1_NW

Building
DENW27AL20000wlt

Building

TowerCrane1

Building

DENW27AL20000wJJ

reachable
BuildingPart

1479134954866_46509971
WallSurface

d56a5f2b-...-143fd9901bfb

BuildingPart

f3cd0cc5-...-86faa1bcdf63

BuildingPart

1479134954866_46509970

to
uc
hi
ng

BuildingPart

cf1845e6-...-7f0c8b7eb240

WallSurface

d5461f2a-...-aaedbbff8a7f

WallSurface
59681a48-...-be92fc6a7eb1

touching

reachable

rea
cha

ble

*
*
*

*

*

Building
DENW27AL20000xHv *

*

WallSurface
b7e104a8-...-b02b1bc07d8c

*

Fig. 3: Fragment of the view model derived from the CityGML description
of a district in Remscheid. Nodes are (ID,Type) pairs as they appear in the
real CityGML model. Presence of other - not shown - elements of the model
is indicated by *.

5.2 Facilitating System Operation: Emergency Response

Technology adoption for fast emergency response in urban environments is
gaining increasing attention: technological advances may in fact provide new
human-computer interaction capabilities, allowing for effective real-time re-
sponse. Consider the classical setting [37] where a disaster scenario is repli-
cated in the Flatiron Building area of New York [43], with several relief en-
tities (e.g., rescue teams, ambulances or Unmanned aerial vehicles – UAVs)
dispatched throughout the area to locate and rescue victims [20,62].

The agents have initial knowledge of the environment, given by the orig-
inal model of the city. However, in such a scenario, we expect the model to
be updated regularly, as soon as new information is acquired by monitoring
processes. Agents must dynamically adjust search operations and rescue pri-
orities through some criteria such as the likelihood of finding victims in an
area or current disaster propagation. In order to perform such tasks, which
largely amount to planning and surveillance [22], an actionable representa-
tion of the city can be a hypergraph in which nodes represent city objects,
while links represent safe connections between multiple nodes. This typically
occurs within a Monitor-Analyze-Plan-Execute loop, as this is an instance of
a self-adaptive system. Agents monitor the area and update the model with

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 23

(a) Area without a tower crane (before).

(b) The crane is placed automatically via a put to the source model (after),
reflecting its addition on the view model.

Fig. 4: Placement of a crane entity on the derived, analyzable model (Fig. 3)
entails its automatic reflection on the source city model (Fig. 4a), resulting in
Fig. 4b.

the information they collect about safety of streets and buildings, while others
escort civilians from the disaster area to hospitals. Path planning takes place
based on analyzed monitored information upon the model, with the purpose
of e.g., maximizing the number of victims rescued. We are solely concerned
with synchronization of the models – as such, analysis, planning and monitor-
ing are therefore out of the scope of this paper. We note that analysis can be
performed with spatial model checking – specification of the desired property
would occur within a logic as spatial properties [62].

In our approach, we define and extract a CityGML ADE from the city
model and populate it with real-time information, with the goal of making the
safe distance relation between city objects explicit. Topocity provides the
hypergraph exploited by the agents, which is updated at runtime as the moni-
toring process generates new information. Figure 5 shows the aerial view of the
Flat Iron Street area of New York as described by the CityGML model (5a),

24 Visconti et al.

(a) The area nearby Flat Iron Street considered for our analysis.

CityModel
FlatIron_Area

Track - Interior_Sidewalk
83670616...e778173f0b41

TrafficArea
tid_83670616...e778173f0b41

Square
e200fc63...6e7afa6f4d47

TrafficArea - Plaza
de8e831e...39b38a6a10c7

Road
W 24 St. - ec5035ff...133d90f3d653

AuxiliaryTrafficArea
 W 24 St.- 7c7648ad...6239ad608f1a

TrafficArea - Plaza
873b2c03...c23c1ccee3f7

AuxiliaryTrafficArea
 W 24 St.- 2b103c87...805d7c781d70

AuxiliaryTrafficArea
 W 24 St.- 64c8f6d3...def94b344c43

Road
8 Av. - b5562641...c3202773

TrafficArea
8 Av.- ca8e6eac...435fe73c0

safePath

sa
fe
Pa

th

sa
fe
Pa

th

safePath

safePath

*
*

*

(b) Fragment of the corresponding view generated.

Fig. 5: Runtime safe path analysis models. The source (a) is transformed into
the analyzable model (b). The highlighted area in (a) represents the safe path
illustrated in (b). Nodes are ID-Type pairs as they appear in the available
CityGML model of New York; the presence of other elements in parts of the
model (not shown) is indicated by *.

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 25

and the corresponding analyzable view (5b). A viable safe path for the city
area is shown, both in the original model and in the analyzable one.

5.3 Edge Cases Analysis

Different applications – even if related to the same geographic space – might
likely need to deal with very different models. This diversity can appear as well
among CityGML models, where Application Domain Extensions might signifi-
cantly affect both the size and the purpose of the model. Imagine, for example,
a scenario where engineers have to take decisions based on the distance of two
objects in a city (shown in Figure 6).

Fig. 6: An hypothetical reachability relation between Rathaus and Burgtheater
in Vienna (Austria).

More precisely, let k be a positive number representing the maximum dis-
tance they are willing to consider. Two objects are k-reachable when the min-
imum distance between them is smaller than k. We can say that an object is
0-reachable from another if the two are touching. At the same time, we can say
that every two objects in the city are ∞-reachable. Depending on the value of
k, the size of the analyzable models can grow significantly: higher values mean
we are more tolerant in the definition of reachability and, therefore, more rela-
tionships will be encoded in the CityGML ADE, resulting in more convoluted
link graphs. We investigate the effect of this variation, over the central area
of the city of Vienna, for several values of k. The analyzable model generated
contains 1120 nodes and up to 448 thousand links.

Table 1 reports a summary of the performance of the forward transfor-
mation executed on the model of the central area of the city of Vienna. The
experiments were performed on a machine equipped with an Intel(R) Xeon(R)
CPU E7-8880 v3 @ 2.30GHz CPU, and 961 GB of RAM (to represent unlim-
ited memory) on Amazon AWS.

26 Visconti et al.

Source Parsing Transformation View
Size (MB) Time (s) RAM (MB) Time (s) RAM (MB) Size (MB)

(no reach) 42 24 810 1 130 2.7
0− reach 43 25 810 259 320 3.3
10− reach 44 25 810 643 320 4
20− reach 45 26 810 1166 350 4.8

Table 1: Comparison of results on the model for the central city of Vienna.
The source is represented as an uncompressed XML file, while the view is an
uncompressed binary dump of the target data structure. Source models are
obtained from [56].

The performance of the transformation on this non-trivial model provides
a two-fold insight for working with large-scale systems. The first is that the
XML parsing stage primarily affects the space impact of the program. This
means that working with a chunked model or pre-parsed data (e.g., by ob-
taining data from a database) will dramatically reduce, if not remove, the
overhead of this stage. The second is that times quickly degrade with the in-
crease of the number of relationships to analyze. While this conforms with
the behaviour of algorithms of Section 3 and their theoretical time complexity
(see Appendix B), it is nevertheless clear that more efficient data structures
and algorithms, paired with parallel computation, might significantly mitigate
this effect. Lastly, it must be noted that we have been considering sizes far
bigger that the typical sizes supported by commercial tools: it is very likely
that, instead of having a dense network of relationships connecting all objects
of the city, more clever source representation will be in place in practical sce-
narios. Naturally, processing entire cities in a single model is not the norm in
CityGML workflows, which typically consider fractions at a time. Our exper-
iment’s purpose, however, was to systematically investigate consideration of
large models, through varying values of k.

5.4 Discussion

The three exemplar cases presented are different, as (i) they target different
models and different levels of detail within CityGML and (ii) they showcase
uses of the framework for both systems’ design and operation and (iii) they
are evaluated on models of different density, spanning from a tree structure
to a dense graph over a non-trivial set of nodes. Hence, we believe they show
the potential of our approach. By using our framework, bidirectional model
transformations upon real spatial descriptions can be performed, keeping an-
alyzable models and CityGML descriptions synchronized. However, from our
experience within model transformations of CityGML descriptions and consid-
ering the perspective of practitioners aiming to use our model-based engineer-
ing approach, interfaces and tooling integration might significantly support
the design cycle.

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 27

A significant flexibility constraint has been briefly presented in Section 3.3.
As anticipated there, links can be a very powerful medium for expressing ar-
bitrarily complex configurations: in some convoluted scenarios, a putback to
the original model may not be feasible or even worse, it may result in changes
affecting a vast number of features, essentially resulting in a different model.
We believe our solution addresses a relatively general set of meaningful ap-
plications, but further research on application scenarios may result in more
precise understanding of practical limitations. Moreover, a considerable prob-
lem in making our framework an effective tool for practical use is the absence
of any public ADE data or generation tool. Nonetheless, we believe this limi-
tation may soon be overcome, thanks to the growing interest in the CityGML
standard by domain experts [13].

An important aspect in BX design is the level of automation desired –
ideally, one would expect to be able to choose an Application Policy that meets
certain needs, plug it in the Topocity framework and use the combinations
of these programs with no extra effort, regardless of the application context.
However, our experience shows that some very complex CityGML features
containing highly varying objects, still need some minimal custom bridging
code to build the transformation. Tackling this problem in a generic manner
requires extending the approach, something we identify as future work.

It is worth mentioning that [53] already solves the tower crane problem of
Section 5-A by developing a plugin for Autodesk Revit –an established tool
in building and urban design. However, as pointed out by the authors, only
a small set of pre-defined simple rules are allowed, implemented ad-hoc for
this purpose. In addition, [30] shows that GIS-BIM models (like CityGML)
have enough information for treating the problem in terms of geometrical and
topological analysis. Our approach, on the contrary, is general enough to allow
for complex rules and user-defined customization if a proper Application Policy
is set in place.

The first two cases considered for our evaluation purposes are model prob-
lems obtained from domain-specific literature, highlighting the use of bidi-
rectional transformations within our framework for model-based engineering
of space-dependent systems. We believe that the strength of our approach is
twofold: firstly, adaptability is exhibited, since integrating disparate application-
related sources of information still result in the same analyzable model; sec-
ondly, providing an automatic way to obtain an abstract model where verifi-
cation can be performed, can lead to the development of more sophisticated
analysis-based workflows.

Finally, within the general context of engineering systems inhabiting city
spaces, we illustrated two characteristic use cases where the approach we ad-
vocate can be beneficial. Those highlight a model-driven adaptive systems
engineering view. At design time, development is grounded on modelling ac-
tivities, including processing and analysis of whether the system inhabiting the
city space satisfies its design goals. However, after it has been designed and
deployed, goal satisfaction may depend on environmental information that
arise only in operation. Such information may need to be integrated to the

28 Visconti et al.

city model to enable processing and analysis, but in this case this has to be
performed at runtime, where the model is populated as information arrives.
Thus, both for design time and runtime cases, analysis and processing cannot
be performed upon the CityGML domain models, but on the analyzable mod-
els that our framework derives. Keeping domain models in sync with derived
analyzable models is crucial.

6 Related Work

We have presented a novel technical framework to engineering bidirectional
model transformations of city models, offering assurances on correct and well-
behaved transformations. Consequently, we classify related work into three cat-
egories. First, we discuss the state-of-the-art in model-based analysis of phys-
ical spaces, positioning our work. Then, we review transformation techniques
and theoretical foundations on consistency. Lastly, we discuss related engi-
neering approaches from the domain of analyzable models (i.e. cyber-physical
systems that build upon spatial representations).

Interest on model-based analysis of cities has been consistently growing
in recent years. The adoption of CityGML for building modeling purposes
has been studied extensively lately [45, 59, 72] and the integration of classical
BIM features has been a leading design goal [54] in defining CityGML 3.0,
to be soon released [36]. In addition, city-based analysis is being developed
in all kinds of application scenarios; most notably, recent efforts have been on
traffic noise analysis [35], photovoltaic potentiality analysis [7], urban emission
measurements analysis [5] and ubiquitous robot networks management [60].
Official city datasets are increasing, with recent public effort from Turkey [9],
Singapore [55] and Germany [71] among all.

Bidirectional transformations (BX) have been an active area of research
for many years now, with a growing research community and a dedicated
conference (“BX”, since 2011). Transformations address the problem of defin-
ing consistency between models, historically originating from the view-update
problem in database research [11,48]. An introduction to the topic of BX can
be found in [4], whereas a very recent comprehensive overview of the field and
techniques for assessing their performance is available in [8]. Several different
approaches have been studied for dealing with bidirectional transformations.
BiGUL is a formally verified putback-based bidirectional programming lan-
guage [32, 33] based on lenses; Symmetric Edit Lenses [68] could be used al-
ternatively, although no practical tool is available to date. The most popular
alternative approach to lenses is the relational one, on which QVT and its
relation language (QVT-R) are predominant [26,39,40]. Another major alter-
native approach is the Triple Graph Grammar (TGG) [28, 52], usable by the
BXtend [16] tool. The flexibility (and hence the limitations) of our reflection
facilities are greatly related to the theoretical issues with the propagation of
effects. Arguably the first work to clarify these issues is [58]; since then works
address effectful bidirectional transformations [46], monadic lenses [3,46], and

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 29

have been dealing with side effects in general. Development of practical tools
exploiting these theoretical results is object of active research by the commu-
nity.

Different forms of graphs as formal models of static representations of
buildings or cities have been proposed in diverse fields such as architectural
informatics [38] or computer graphics [70], with different objectives. Several
approaches target case-based reasoning [1] in the architectural domain. How-
ever, actionable and analyzable models are necessary for advanced design and
operation of overall space-dependent systems [61]. In [38], a topology of spatial
configurations is extracted from building information models as well as hand-
written architectural sketches [6] and represented as graphs. Within the Inter-
net of Things, analyzable models are extracted from trajectories and reasoned
upon with a spatial logic [65]. Focusing on security reasoning while aiming at
early design phases, Porter et al. [47] propose a method and heuristics to dis-
cover security threats on building specifications via simulation. Analyses such
as similarity checking are performed based on graph matching techniques [19].
Forms of graphs representing topology of space are highly useful. To this end,
our target analyzable models are graph-based and readily analyzable with a
variety of approaches [64]. The notion of a cyber-physical space refers to a
composite model able to capture complex relations of human, cyber and phys-
ical entities, which may span physical or computational barriers. Such a model
may be obtained from a physical model and enriched with formally-specified
dynamics capturing possible ways it can change [63]; spatio-temporal model
checking of evolving cyber-physical spaces can then be considered [62]. We
note that different model projections corresponding to requirements may be
derived (and synchronized) on the specification level automatically, achieving
cone-of-influence reduction on analysis [66].

7 Conclusions and Future Work

Motivated by model-based design and operation of space-dependent systems,
we presented a technical framework enabling synchronizations between city
spatial domain models and graph-based analyzable models. Synchronizations
produced are automatically derived, correct and well-behaved. The models we
considered are based on CityGML, widely used by practitioners to represent
city or building spaces. The novel bidirectional reflection facilities we provided
can be readily used to (i) derive models from real CityGML models occurring in
practice and (ii) instrument modeling and analysis facilities for cyber-physical
systems. Their realization, in the form of an accompanying artifact is available
as open source software.

Considering the perspective of practitioners aiming to utilize model-driven
synchronization facilities, we identify several research directions that could be
pursued in the future. Interfaces and toolchain integration would go a long way
in supporting the design cycle. This goes hand in hand with tackling practical
issues of CityGML, such as public ADE data or generation facilities, to en-

30 Visconti et al.

sure effective tooling for practical usage. The general class of synchronization
problems we addressed must be clarified: our framework’s main hypothesis is
the unchangeability of the consistency relation between the source and the
view; an alteration to the latter may require massive rewrites of the core of
our framework. Regarding theoretical aspects, we aim to investigate pluggable
custom application policies and support arbitrary CityGML features. Lastly,
an interesting research direction is the generalization of synchronization to a
many-to-one model; being able to support multi-model sources might enable
support of a wider range of applications dealing with wide area services (such
as transportation networks, telecommunications, etc.).

Acknowledgment

Research partially supported by FWF Austria projects “High-dimensional statistical learn-
ing: New methods to advance economic and sustainability policies” (ZK 35), and “EDENSPACE”
(M 2778-N). We kindly acknowledge cloud usage from the Amazon AWS Credits for Re-
search program.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological vari-
ations, and system approaches. AI communications 7(1), 39–59 (1994)

2. Abdelmegid, M.A., Shawki, K.M., Abdel-Khalek, H.: Ga optimization model for solving
tower crane location problem in construction sites. Alexandria Engineering Journal
54(3), 519 – 526 (2015). DOI https://doi.org/10.1016/j.aej.2015.05.011. URL http:

//www.sciencedirect.com/science/article/pii/S1110016815000836

3. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Reflections on
Monadic Lenses, pp. 1–31. Springer International Publishing, Cham (2016). DOI
10.1007/978-3-319-30936-1 1. URL https://doi.org/10.1007/978-3-319-30936-1_1

4. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Introduction
to Bidirectional Transformations, pp. 1–28. Springer International Publishing,
Cham (2018). DOI 10.1007/978-3-319-79108-1 1. URL https://doi.org/10.1007/

978-3-319-79108-1_1

5. Ahlers, D., Kraemer, F.A., Braten, A.E., Liu, X., Anthonisen, F., Driscoll, P., Krogstie,
J.: Analysis and visualization of urban emission measurements in smart cities. In: EDBT
(2018)

6. Ahmed, S., Weber, M., Liwicki, M., Langenhan, C., Dengel, A., Petzold, F.: Automatic
analysis and sketch-based retrieval of architectural floor plans. Pattern Recognition
Letters 35, 91–100 (2014)

7. Alam, N., Coors, V., Zlatanova, S.: Detecting shadow for direct radiation using
CityGML models for photovoltaic potentiality analysis, pp. 191–210. London: CRC
Press (2013). DOI 10.1201/b14914-23

8. Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z., Ko, H.S., Eramo, R., Hinkel, G.,
Samimi-Dehkordi, L., Zündorf, A.: Benchmarking bidirectional transformations: theory,
implementation, application, and assessment. Software and Systems Modeling 19(3),
647–691 (2020). DOI 10.1007/s10270-019-00752-x. URL https://doi.org/10.1007/

s10270-019-00752-x

9. Ates, S., Stoter, J., Ledoux, H., Ozbek, E., Yomralioglu, T.: Establishing a national
3d geo-data model for building data compliant to citygml: Case of turkey. ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XLI-B2, 79–86 (2016). DOI 10.5194/isprs-archives-XLI-B2-79-2016

http://www.sciencedirect.com/science/article/pii/S1110016815000836
http://www.sciencedirect.com/science/article/pii/S1110016815000836
https://doi.org/10.1007/978-3-319-30936-1_1
https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1007/s10270-019-00752-x

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 31

10. Baier, C., Katoen, J.P., et al.: Principles of model checking, vol. 26202649. MIT press
Cambridge (2008)

11. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans. Database
Syst. 6(4), 557–575 (1981). DOI 10.1145/319628.319634. URL http://doi.acm.org/

10.1145/319628.319634

12. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially dis-
tributed cyber-physical systems. In: J. Talpin, P. Derler, K. Schneider (eds.) Proceedings
of the 15th ACM-IEEE International Conference on Formal Methods and Models for
System Design, MEMOCODE 2017, Vienna, Austria, September 29 - October 02, 2017,
pp. 146–155. ACM (2017)

13. Biljecki, F., Kumar, K., Nagel, C.: Citygml application domain extension (ade): overview
of developments. Open Geospatial Data, Software and Standards 3(1), 13 (2018). DOI
10.1186/s40965-018-0055-6. URL https://doi.org/10.1186/s40965-018-0055-6

14. Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.: Applications of 3d city
models: State of the art review. ISPRS International Journal of Geo-Information 4(4),
2842–2889 (2015). DOI 10.3390/ijgi4042842. URL http://www.mdpi.com/2220-9964/

4/4/2842

15. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice.
M& C Publishers (2012)

16. Buchmann., T.: Bxtend - a framework for (bidirectional) incremental model transforma-
tions. In: Proceedings of the 6th International Conference on Model-Driven Engineer-
ing and Software Development - Volume 1: MODELSWARD,, pp. 336–345. INSTICC,
SciTePress (2018). DOI 10.5220/0006563503360345

17. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT press (1999)
18. Consortium, O.G.: City Geography Markup Language (CityGML) Encoding Standard,

version: 2.0.0. http://www.opengis.net/spec/citygml/2.0 (2012)
19. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pat-

tern recognition. International journal of pattern recognition and artificial intelligence
18(03), 265–298 (2004)

20. DeBusk, W.: Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley,
chap. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley. In-
fotech@Aerospace Conferences. American Institute of Aeronautics and Astronautics
(2010). DOI 10.2514/6.2010-3506. URL https://doi.org/10.2514/6.2010-3506. 0

21. Eastman, C., Eastman, C.M., Teicholz, P., Sacks, R.: BIM Handbook: A Guide to Build-
ing Information Modeling for Owners, Managers, Designers, Engineers and Contractors.
J.W & S (2011)

22. Eaton, C.M., Chong, E.K.P., Maciejewski, A.A.: Multiple-scenario unmanned aerial
system control: A systems engineering approach and review of existing control methods.
Aerospace 3(1) (2016). DOI 10.3390/aerospace3010001. URL http://www.mdpi.com/

2226-4310/3/1/1

23. Feng, B., Gao, J.: Distributed parallel needleman-wunsch algorithm on heterogeneous
cluster system. In: 2015 International Conference on Network and Information Systems
for Computers, pp. 358–361 (2015). DOI 10.1109/ICNISC.2015.145

24. Filip Biljecki, K.H.H.: CityGML open data initiatives. http://www.citygmlwiki.

org/index.php?title=Open_Data_Initiatives (2017). Archived at https:

//web.archive.org/web/20190815000000*/http://www.citygmlwiki.org/index.

php/Open_Data_Initiatives

25. Gibbons, J., Stevens, P. (eds.): Bidirectional Transformations. Springer International
Publishing (2018). DOI 10.1007/978-3-319-79108-1. URL https://doi.org/10.1007/

978-3-319-79108-1

26. Greiner, S., Buchmann, T., Westfechtel, B.: Bidirectional transformations with qvt-r:
A case study in round-trip engineering uml class models and java source code. 2016
4th International Conference on Model-Driven Engineering and Software Development
(MODELSWARD) pp. 15–27 (2016)

27. Group, O.M.: Meta object facility (mof) core specification, version 2.4.1. OMG docu-
ment number: formal/2013-06-01 (2013)

28. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of
model synchronization based on triple graph grammars. In: MoDELS (2011)

http://doi.acm.org/10.1145/319628.319634
http://doi.acm.org/10.1145/319628.319634
https://doi.org/10.1186/s40965-018-0055-6
http://www.mdpi.com/2220-9964/4/4/2842
http://www.mdpi.com/2220-9964/4/4/2842
http://www.opengis.net/spec/citygml/2.0
https://doi.org/10.2514/6.2010-3506
http://www.mdpi.com/2226-4310/3/1/1
http://www.mdpi.com/2226-4310/3/1/1
http://www.citygmlwiki.org/index.php?title=Open_Data_Initiatives
http://www.citygmlwiki.org/index.php?title=Open_Data_Initiatives
https://web.archive.org/web/20190815000000*/http://www.citygmlwiki.org/index.php/Open_Data_Initiatives
https://web.archive.org/web/20190815000000*/http://www.citygmlwiki.org/index.php/Open_Data_Initiatives
https://web.archive.org/web/20190815000000*/http://www.citygmlwiki.org/index.php/Open_Data_Initiatives
https://doi.org/10.1007/978-3-319-79108-1
https://doi.org/10.1007/978-3-319-79108-1

32 Visconti et al.

29. Hu, Z., Ko, H.S.: Principles and Practice of Bidirectional Programming in BiGUL,
pp. 100–150. Springer International Publishing, Cham (2018). DOI 10.1007/
978-3-319-79108-1 4. URL https://doi.org/10.1007/978-3-319-79108-1_4

30. Irizary, J., Karan, E.: Optimizing location of tower cranes on construction sites through
gis and bim integration. Electronic Journal of Information Technology in Construction
17, 351–366 (2012)

31. Kehrer, T., Tsigkanos, C., Ghezzi, C.: An EMOF-compliant abstract syntax for bi-
graphs. In: Graphs as Models at ETAPS16 (to appear) (2016)

32. Ko, H.S., Hu, Z.: An axiomatic basis for bidirectional programming. Proc. ACM Pro-
gram. Lang. 2(POPL) (2017). DOI 10.1145/3158129. URL https://doi.org/10.1145/

3158129

33. Ko, H.S., Zan, T., Hu, Z.: Bigul: A formally verified core language for putback-based
bidirectional programming. In: Proceedings of the 2016 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM ’16, p. 61–72. Association for
Computing Machinery, New York, NY, USA (2016). DOI 10.1145/2847538.2847544.
URL https://doi.org/10.1145/2847538.2847544

34. Kolbe, T., Gröger, G., Plümer, L.: Citygml: Interoperable access to 3d city models. In:
Geo-information for disaster management. Springer (2005)

35. Konde, A., Saran, S.: Web enabled spatio-temporal semantic analysis of traffic noise
using citygml. ISG Journal of Geomatics (2017)

36. Kutzner, T., Chaturvedi, K., Kolbe, T.H.: Citygml 3.0: New functions open up new
applications. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation
Science 88(1), 43–61 (2020). DOI 10.1007/s41064-020-00095-z. URL https://doi.org/

10.1007/s41064-020-00095-z

37. Kwan, M.P., Lee, J.: Emergency response after 9/11: the potential of real-time 3d
gis for quick emergency response in micro-spatial environments. Computers, Envi-
ronment and Urban Systems 29(2), 93 – 113 (2005). DOI https://doi.org/10.1016/j.
compenvurbsys.2003.08.002. URL http://www.sciencedirect.com/science/article/

pii/S0198971503000796

38. Langenhan, C., Weber, M., Liwicki, M., Petzold, F., Dengel, A.: Graph-based retrieval
of building information models for supporting the early design stages. Advanced Engi-
neering Informatics 27(4), 413–426 (2013)

39. Lano, K., Kolahdouz-Rahimi, S., Yassipour-Tehrani, S.: Declarative specification of bidi-
rectional transformations using design patterns. IEEE Access 7, 5222–5249 (2019)

40. Macedo, N., Cunha, A.: Implementing qvt-r bidirectional model transformations using
alloy. In: V. Cortellessa, D. Varró (eds.) Fundamental Approaches to Software Engi-
neering, pp. 297–311. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

41. Milner, R.: Bigraphical reactive systems. In: K.G. Larsen, M. Nielsen (eds.) CONCUR
2001 — Concurrency Theory, pp. 16–35. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001)

42. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University
Press (2009)

43. München, T.: 3d city model of new york city - tum. https://www.gis.bgu.tum.de/en/

projects/new-york-city-3d/ (2015)
44. van Nederveen, G., Tolman, F.: Modelling multiple views on buildings. Au-

tomation in Construction 1(3), 215 – 224 (1992). DOI https://doi.org/10.1016/
0926-5805(92)90014-B. URL http://www.sciencedirect.com/science/article/pii/

092658059290014B

45. Ohori, K.A., Diakité, A.A., Krijnen, T., Ledoux, H., Stoter, J.E.: Processing bim and
gis models in practice: Experiences and recommendations from a geobim project in the
netherlands. ISPRS Int. J. Geo-Information 7, 311 (2018)

46. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for ”putback” style bidirec-
tional programming. In: Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation, PEPM ’14, p. 39–50. Association for Comput-
ing Machinery, New York, NY, USA (2014). DOI 10.1145/2543728.2543737. URL
https://doi.org/10.1145/2543728.2543737

47. Porter, S., Tan, T., Tan, T., West, G.: Breaking into bim: Performing static and dynamic
security analysis with the aid of bim. Automation in Construction 40, 84–95 (2014)

https://doi.org/10.1007/978-3-319-79108-1_4
https://doi.org/10.1145/3158129
https://doi.org/10.1145/3158129
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.1007/s41064-020-00095-z
http://www.sciencedirect.com/science/article/pii/S0198971503000796
http://www.sciencedirect.com/science/article/pii/S0198971503000796
https://www.gis.bgu.tum.de/en/projects/new-york-city-3d/
https://www.gis.bgu.tum.de/en/projects/new-york-city-3d/
http://www.sciencedirect.com/science/article/pii/092658059290014B
http://www.sciencedirect.com/science/article/pii/092658059290014B
https://doi.org/10.1145/2543728.2543737

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 33

48. Pratt, T.W.: Pair grammars, graph languages and string-to-graph translations. Journal
of Computer and System Sciences 5(6), 560 – 595 (1971). DOI https://doi.org/10.1016/
S0022-0000(71)80016-8. URL http://www.sciencedirect.com/science/article/pii/

S0022000071800168

49. Revit, A.: Revit products 2018 documentation - constraints defini-
tion feature. https://knowledge.autodesk.com/support/revit-products/

learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/

GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html (2018)
50. Sankoff, D.: Matching sequences under deletion/insertion constraints. Proceedings of

the National Academy of Sciences 69(1), 4–6 (1972). DOI 10.1073/pnas.69.1.4. URL
https://www.pnas.org/content/69/1/4

51. Saran, S., Oberai, K., Wate, P., Konde, A., Dutta, A., Kumar, K., Senthil Kumar, A.:
Utilities of virtual 3d city models based on citygml: Various use cases. Journal of the In-
dian Society of Remote Sensing 46(6), 957–972 (2018). DOI 10.1007/s12524-018-0755-5.
URL https://doi.org/10.1007/s12524-018-0755-5

52. Schürr, A.: Specification of graph translators with triple graph grammars. In: E.W.
Mayr, G. Schmidt, G. Tinhofer (eds.) Graph-Theoretic Concepts in Computer Science,
pp. 151–163. Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

53. Schwabe, K., König, M., Teizer, J.: Bim applications of rule-based checking in construc-
tion site layout planning tasks. In: 2016 Proceedings of the 33rd ISARC, Auburn, AL,
USA (2016). DOI 10.22260/ISARC2016/0026

54. SIG3D: CityGML 3.0 requirements - munich 2013. http://en.wiki.modeling.sig3d.

org/index.php/Workshop_Munich_2013 (2013)
55. Soon, K.H., Khoo, V.H.S.: Citygml modelling for singapore 3d na-

tional mapping. ISPRS - International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences XLII-4/W7, 37–42
(2017). DOI 10.5194/isprs-archives-XLII-4-W7-37-2017. URL https://www.

int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W7/37/2017/

56. Stadtverlassung, M.W.M..: Generalized roof model catalog (lod2) vienna. https://www.
data.gv.at/katalog/dataset/86d88cae-ad97-4476-bae5-73488a12776d (2019)

57. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-driven software develop-
ment - technology, engineering, management. Pitman (2006)

58. Stevens, P.: Bidirectional model transformations in qvt: semantic issues and open ques-
tions. Software & Systems Modeling 9(1), 7 (2010)

59. Stouffs, R., Tauscher, H., Biljecki, F.: Achieving complete and near-lossless conversion
from ifc to citygml. ISPRS Int. J. Geo-Information 7, 355 (2018)

60. Teramoto, Y., Sato, A., Maruyama, K., Tomita, H.: Map representation for ubiquitous
network robot services. In: Proceedings of the Fourth ACM SIGSPATIAL International
Workshop on Indoor Spatial Awareness, ISA ’12, pp. 29–32. ACM (2012). DOI 10.1145/
2442616.2442623. URL http://doi.acm.org/10.1145/2442616.2442623

61. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Architecting dynamic cyber-physical spaces.
Computing 98(10), 1011–1040 (2016)

62. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of evolving cyber-
physical spaces. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, 2017, pp. 38–48 (2017)

63. Tsigkanos, C., Kehrer, T., Ghezzi, C., Pasquale, L., Nuseibeh, B.: Adding static and
dynamic semantics to building information models. In: Proceedings of the 2nd Interna-
tional Workshop on Software Engineering for Smart Cyber-Physical Systems, pp. 1–7.
ACM (2016)

64. Tsigkanos, C., Li, N., Jin, Z., Hu, Z., Ghezzi, C.: On early statistical requirements valida-
tion of cyber-physical space systems. In: Proceedings of the 4th International Workshop
on Software Engineering for Smart Cyber-Physical Systems, ICSE 2018, Gothenburg,
Sweden, May 27, 2018, pp. 13–18 (2018)

65. Tsigkanos, C., Nenzi, L., Loreti, M., Garriga, M., Dustdar, S., Ghezzi, C.: Inferring
analyzable models from trajectories of spatially-distributed internet-of-things. In: 1th
IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2019, Montreal, Canada, May 25-26, 2019. IEEE
Computer Society (2019)

http://www.sciencedirect.com/science/article/pii/S0022000071800168
http://www.sciencedirect.com/science/article/pii/S0022000071800168
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html
https://www.pnas.org/content/69/1/4
https://doi.org/10.1007/s12524-018-0755-5
http://en.wiki.modeling.sig3d.org/index.php/Workshop_Munich_2013
http://en.wiki.modeling.sig3d.org/index.php/Workshop_Munich_2013
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W7/37/2017/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W7/37/2017/
https://www.data.gv.at/katalog/dataset/86d88cae-ad97-4476-bae5-73488a12776d
https://www.data.gv.at/katalog/dataset/86d88cae-ad97-4476-bae5-73488a12776d
http://doi.acm.org/10.1145/2442616.2442623

34 Visconti et al.

66. Tsigkanos, C., Nianyu, L., Jin, Z., Zhenjiang, H., Ghezzi, C.: Scalable multiple-view
analysis of reactive systems via bidirectional model transformations. In: Proc. 35th
Intl. Conf. on Automated Software Engineering. IEEE (2020)

67. Visconti, E., Tsigkanos, C., Hu, Z., Ghezzi, C.: Model-driven design of city spaces via
bidirectional transformations. In: Proceedings of the ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems, MODELS ’19 (2019)

68. Wagner, D.: Symmetric edit lenses: A new foundation for bidirectional languages.
Ph.D. thesis, University of Pennsylvania (2014). URL https://search.proquest.com/

docview/1614532529?accountid=39579. Copyright - Database copyright ProQuest LLC;
ProQuest does not claim copyright in the individual underlying works; Last updated -
2019-10-19

69. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1),
168–173 (1974). DOI 10.1145/321796.321811. URL https://doi.org/10.1145/321796.

321811

70. Wessel, R., Blümel, I., Klein, R.: The room connectivity graph: Shape retrieval in the
architectural domain. In: The 16-th Intl Conf. in Central Europe on Computer Graphics,
Visualization and Computer Vision (2008)

71. Ministerium für Wirtschaft Innovation, D.u.E.d.L.N.W.: Nordrhein-westfalen open ge-
ographic data. https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/ (2017)

72. Zhu, J., Wright, G., Wang, J., Wang, X.: A critical review of the integration of geo-
graphic information system and building information modelling at the data level. ISPRS
Int. J. Geo-Information 7, 66 (2018)

https://search.proquest.com/docview/1614532529?accountid=39579
https://search.proquest.com/docview/1614532529?accountid=39579
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321796.321811
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 35

A Application Policy Example

C

A B

(a) A simple city with three
buildings.

A B

C

(b) The corresponding view
generated.

A B

C

T

(c) The updated view.

Fig. 7: A typical problematic case. There are three buildings in our city (a),
and we start to analyze them without any extra relationships - no links in
view (b). Then we decide we want to connect A and B with a tunnel T (c).

To get a concrete understanding of the issue, imagine a setting like the one in Figure 7:
let’s say we want to add a tunnel that connects buildings A and B. Figure 7c shows the
bigraph expressing this requirement. To reflect the changes back to the city model, let’s say
we start iterate the putback procedure starting from the building A; there are clearly many
alternative solutions, some of them are shown in Figure 8.

By looking at the picture 8, one can see that there could be theoretically multiple
(actually infinite) solutions to the problem. Our UPDATE action would only allow solution
(a), because solutions (b) and (c) would require to change the shape or the position of nodes
different from the current one, which are two illegal operations for our Application Policy.

In the most degenerate case, a solution may even result in a completely different con-
figuration of the city space, where for example the position of every object in the city is
changed in order to satisfy a requirement. In such cases it would become meaningless to
synchronize the two models because, as it is even harder to say that we are talking about
the same model as the beginning. It must be noted that transformations like case (b) and
(c) might indeed be useful in some cases. However, we did not find, to date, any suitable
case scenarios for them and the limiting factor of this assumption is still a matter of active
investigation.

36 Visconti et al.

C

BA

T

(a)

C

B

A

T

(b)

C

A B

T

(c)

Fig. 8: Despite all these solutions being formally correct, only solution (a) is
reasonable, since it does not require to move other buildings or to change their
shapes.

Model-Driven Engineering City Spaces via Bidirectional Model Transformations 37

B Complexity Analysis

Let objects(S), relationships(S) denote respectively the set of objects and the set of
relationships of the source. Conversely, let nodes(V) and links(V) denote the sets of nodes
and links of the view, respectively. We denote by | · | the cardinality measure of a set. We
also call a trivial policy any Application Policy of the kind described in Section 3, running
in O(1) (imagine for example constant policies, which reify nodes as objects of a pre-defined
fixed shape at a pre-defined fixed position).

Lemma 1 Place-consistency of a trivial-policy put transformation between a CityGML
model S and a bigraph V , can be obtained in O(n2), with n = max{|objects(S)|, |nodes(V)|}.

Proof By definition, the transformation from V to S is place-consistent if A.1 and A.2 hold,
which are the postconditions of Algorithm 1. First, assume objects and nodes already have
references to their children readily available in their data structure (for e.g. like in Listing 2).
The starting operation performed is alignLists(·) which – since it can be seen as a form
of string alignment– can be executed, in the worst case scenario, in O(n2) [23, 50, 69]. The
algorithm, after aligning the lists, loops over the pairs of source objects and view nodes. In
the worst case, the source and the view have no elements in common, which means the loop
runs |objects(S)|+|nodes(V)| times, which is less than O(2n) ≈ O(n). Supposing the source
and the view are completely different, any iteration of the loop might trigger our Application
Policy, which returns a result in O(1). Lastly, this behavior is mapped to every element of
the two trees. However, this doesn’t change the complexity, since at previous steps we had
two trees having all the nodes as direct children, which represents the worst case (the most
computational-intensive operation is performed on all the elements and nodes of the two
trees). In conclusion, the time to execute the algorithm is O(n2)+O(n)∗O(1) = O(n2). ut

Lemma 2 Link-consistency of a trivial-policy put transformation between a CityGML
model S and a bigraph V , can be obtained in O(n2m2), with n = max{|objects(S)|, |nodes(V)|}
and m = max{|relationships(S)|, |links(V)|}.

Proof Similar to Lemma 1, we are considering a policy of complexity O(1), and we are
enforcing A.3 as a postcondition of Algorithm 2, which has A.1 and A.2 as precondi-
tions. First, fetchRels(·) and fetchLinks(·) do, symmetrically, the same operations on
the two structures, i.e. they create an auxiliary data structure that indexes the relation-
ships/ links in terms of the objects/nodes they relate to. In the worst case, where rela-
tionships and links refer all the objects and nodes respectively, this operation can take at
most O(|objects(S)| |relationships(S)|) for fetchRels(·) and O(|nodes(V)| |links(V)|)
for fetchLinks(·), therefore≈ O(nm). Now, with arguments similar to Lemma 1, alignLists(·)
can be executed in O(m2) [23,50,69] and the outer for loop iterates at most |relationships(S)|+
|links(V)| times, i.e. O(m). Now, the internal alignLists(·) could still take up to O(n2),
in the case a relation/link connects all the objects/nodes of the respective structure. This
whole procedure is executed once for each object or node (note that they are exactly n, since
A.1 holds). At the end, we have O(n) ∗ [O(nm) + (O(m) ∗O(n2) ∗O(1))] ≈ O(n2m2). ut

Proposition 1 A CityGML model S and a bigraph V can be made consistent by a trivial-
policy in at most O(n2m2), with n = max{|objects(S)|, |nodes(V)|} and m = max
{|relationships(S)|, |links(V)|}.

Proof By definition S and V are consistent if they are place-consistent and link-consistent,
which, as proved in Lemma 1 and Lemma 2, can be enfored in O(n2)+O(n2m2) = O(n2m2).

ut

	Introduction
	City Space Models and their Representation
	Bidirectional Transformations of City Space Models
	Topocity: Bidirectional Transformations Implementation
	Evaluation
	Related Work
	Conclusions and Future Work
	Application Policy Example
	Complexity Analysis

