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Abstract—The communication of web services is typically organized through public APIs, which rely on a common data model shared
among all system components. Over time, this data model must be changed in order to accommodate new or changing requirements,
and the system components including the data they are operating on must be migrated. In practice, however, not all the affected
components can be migrated instantly and at the same time. A common approach is to plan data model changes in a backward
compatible fashion, which eventually causes serious maintenance problems and is a common cause of technical debt. In this paper,
we propose an alternative solution to this problem by using a translation layer serving as a round-trip migration service which is
responsible for the lossless forth-and-back translation of object-oriented data model instances of different versions. We present a
framework which offers a version-aware interface definition language (IDL) for APIs, a typed JavaScript-based language for defining
migration functions using the IDL definition, and a run-time environment for executing migrations. This is bundled into an integrated
development environment assisting developers in implementing migration functions. From a methodological point of view, the
development of round-trip migrations is supported by a catalog which comprises a set of typical data model evolution scenarios along
with corresponding suitable round-trip migration strategies. We validate our framework by carrying out an extensive evaluation
including a systematic assessment of expressiveness using our catalog, micro-benchmarking the performance of round-trip migrations,
as well as a practical application in a case study of a real-world e-commerce web application obtained from an industrial partner.
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1 INTRODUCTION

Contemporary distributed systems are characterised by an
omnipresence of web services, a paradigm that has fueled
programmatic interactions between different web-facing sys-
tems. A service interface defines functionality visible to
the external world and provides the means to access this
functionality – such as available operations, parameters and
access protocols – in a way that other software modules can
determine what it does, how to invoke its functionality, and
what result to expect in return. Communication within web-
based services is typically organized through APIs. Those,
often implemented using technologies like Apache Thrift,
gRPC Remote Procedure Calls or plain REST endpoints,
typically rely on a common data model shared among all
system components (i.e., services).

Over time, the shared data model must be changed
to accommodate new or changing requirements, and the
system components including the data they are operating
on must be migrated. This problem, commonly known
as API evolution, is a well-known challenge, in particular
for web APIs [1], [2], [3]. In practice, however, not all
affected components can be migrated instantly and at the
same time, particularly when web-based services and clients
are developed and maintained by different teams or even
different parties. Since the API’s functionality is provided
by a service, clients cannot just stick to an older version,
which is possible in case of conventional software libraries
or frameworks. This may lead to severe problems for client
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programmers [4]. A common workaround for this legacy
problem is that API providers plan data model changes
in a backward compatible fashion. However, this severely
hampers flexibility when evolving the data model. Essen-
tially, either many versions of the same data model must
be maintained in parallel, or a superimposed data model
unifying all versions may be used, which is hard to maintain
in the long run. Both workarounds are common causes of
technical debt [5]. This even poses a problem for modern
API technologies like GraphQL1, where such a data model
can still be identified, although the coupling between two
services is dramatically reduced.

To address this issue, we consider an alternative so-
lution that relies on translation layers between different
services and components of a distributed system to enable
backwards-compatible API use. To illustrate, Fig. 1 shows
typical examples of distributed systems exposing a three-tier
architecture with a client, a service and a database layer. The
API and its underlying data model are evolved from version
1 (red) to version 2 (purple), which may lead to several evo-
lution scenarios. In all these scenarios, we need a translation
layer (TL) which is responsible for the lossless translation of
data model instances. Ideally, all components are updated
simultaneously (Ê); in this case we need a translation layer
to migrate the existing data using tools such as Liquibase2.
If not all components are updated, we can identify different
cases, each of which requires a translation layer to migrate
the data on demand (Ë, Ì, Í).

Scenario Í is particularly interesting: The database and
service are updated, as they are maintained by the API
provider. The client is not updated but it uses a library

1. graphql.org 2. liquibase.com
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Fig. 1. An example of a distributed system in which data model evolution
is supported through (round-trip) migrating data translation layers.

including the translation layer. In this case, the migration is
performed by the client, which avoids any migration work-
load on the server side. Even though the migration is done
on client side, the translation layer itself is still provided by
the API provider by means of a library. Eventually, it is the
API provider who knows what needs to be migrated.

Translation layers are a practical solution that can be
found in real-world systems, supported by tools such as
GraphQL1 and Liquibase2. However, only few practical ef-
forts have been directed at supporting the underlying prob-
lem of migrating data model instances forth and back be-
tween different model versions. To address this, we present
a novel framework for round-trip migration development.
Our system relies on a versioned interface definition lan-
guage (IDL) and an imperative migration language, based
on model transformation techniques. We implement our
framework as an internal domain-specific language on top
of JavaScript, well-known to many web developers.

In our framework, we focus on objects sent forth
and back between components which are to be migrated.
Changes of functions (i.e., methods in object-oriented or
endpoints in HTTP terminology) may be handled by a
translation layer as well, but are out of the scope of this pa-
per. Similarly, protocol changes [1] (e.g., change of message
format, authentication, rate limit) are also not considered,
as we solely focus on the data powering the web services.
Finally, we focus on a single round-trip migration at a time
and do not consider concurrent operations.

Our contributions are in the form of a comprehensive
framework facilitating the implementation of translation lay-
ers for the data model evolution of Service APIs. Specifically,

1) we provide a version-aware interface definition lan-
guage (IDL) for object-oriented service APIs,

2) a typed JavaScript-based language for defining migra-
tion functions using the IDL definition, and

3) a run-time environment for executing migrations which
can be used by a translation layer in order to realize
round-trip migrations.

4) Methodologically, development of round-trip migra-
tions is supported by a catalogue which comprises a set
of typical data model evolution scenarios along with a
suitable round-trip migration strategy.

5) We validate our framework by carrying out an ex-
tensive evaluation including a systematic assessment
of expressiveness, micro-benchmarking as well as a
practical application to the case of a data-intensive real-
world e-commerce web application.

Our framework allows for flexibility when changing

data models, since it does not require backward compati-
bility. In contrast to other approaches proposed in the liter-
ature, our framework is explicitly tailored to the practical
needs of round-trip migration development in the context
of web services. Furthermore, we provide methodologi-
cal support for migration scenarios, in turn elicited from
previous research on edit operations by Hermannsdörfer et
al. [6] within metamodel evolution, in the form of a patterns
catalog. Each consists of a basic edit operation and a suitable
migration in a translation layer using our framework.

The remainder of this paper is organized as follows.
In Sec. 2, we motivate our work and research goals by
introducing a running example used throughout the pa-
per. In particular, we derive design requirements for our
framework that aims at supporting the effective and flexi-
ble development of round-trip migrations. To fulfill these
requirements, Sec. 3 introduces a version-aware interface
definition language (IDL) which lays the foundations for
the migration framework described in Sec. 4. Last, Sec. 5
presents our validation, including a catalog of round-trip
migration scenarios to assess expressiveness, the results of
our micro-benchmarking experiments as well as the imple-
mentation of a translation layer using an industrial case
study. We discuss related work in Sec. 6, and conclude
along with an outlook on future work in Sec. 7.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce a simple example of object-
oriented data model evolution, along with a discussion of
according round-trip migration scenarios of data model in-
stances. Thereby, we introduce basic terms and motivate our
work, before we distill specific design requirements for our
round-trip migration framework that aims at supporting the
effective and flexible development of round-trip migrations.

2.1 Motivating Example

Fig. 2 shows a typical evolution step of an object-oriented
data model (using UML class diagram notation). The exam-
ple is based on the so-called Families to Persons Case [7], a
well-known benchmark in the related field of bidirectional
model transformation (see discussion of related work in
Sec. 6). We slightly adapted and reduced the original bench-
mark here to keep the example as small as possible while
still serving as a motivation for our work. In essence, a
Family comprises an arbitrary number of family members,
and members are represented as objects of class Person,
which in turn defines two fields of type String. In the
original version of the data model on the left, called M1,
both fields are mandatory. The value of the field name shall
represent the given name (i.e., first name) of a person. The
gender of a person may be unspecified, which shall be
represented by an empty string value (written " " in the
sequel) of the field gender. Two changes have been applied
to the data model to become the revised version on the
right, called M2. First, the field name has been renamed to
firstname in order to account for the fact that it intends
to represent the given name of a person. Second, the field
gender has been declared to be optional (indicated by the
notation [?]); the rationale behind this change is that the
value of this field may be omitted for privacy reasons.
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Fig. 2. Motivating example: Evolution step of an object-oriented data
model which is part of the API of services in a distributed system.
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Fig. 3. Motivating example: Three different round-trip migration scenar-
ios of object-oriented data model instances.

Now, we assume two communicating services, called S1

and S2, where S2 has been already migrated to data model
version M2 while S1 is still based on M1. This leads to a
couple of interesting round-trip migration scenarios, three
of which are illustrated in Fig. 3. In all three scenarios,
service S2 sends an object of type Person to service S1,
thus the Person object needs to be downgraded to be a
valid instance of M1. Later on, service S1 sends back the
object, which needs to be upgraded from M1 to M2 again.
Given the information that the field name has been renamed
to firstname (i.e., the fields name and firstname are
corresponding fields in data model versions M1 and M2,
respectively), the value of this field can be simply copied
forth and back in all the migrations (both upgrades and
downgrades) shown in Fig. 3. The more interesting aspect in
our example is how deal with the field gender, which we
will consider in more detail for each of the three scenarios
in the remainder of this section.

In the first round-trip migration scenario 1© (on the
upper left), the Person object sent by service S2 does
not expose any gender information. This is possible since
the field gender is declared to be optional in data model
version M2. In M1 on the contrary, the respective field
is mandatory. Therefore, the downgrade migration must
somehow account for a null-value, e.g. set the value of the
mandatory field to the default value of its respective data
type (i.e., the empty String in our example). Later on, when
the Person object is sent back to S2, it is to be upgraded by
restoring the respective null-value.

In the second round-trip migration scenario 2© (on the
lower left), the Person object sent by S2 does expose gender
information, which is deliberately unspecified (as opposed
to the null-value in the first scenario which hides gender
information for privacy reasons). In this case, the empty
String value of the field gender may be simply copied in
both the downgrade and the upgrade migration.

A challenge arises when comparing the first and the
second scenario. When upgrading a Person object from M1

to M2, the empty String value of field gender is simply
copied in the second scenario, while the field is re-initialized
with a null-value in the first scenario. This means that,
in terms of the respective upgrade migrations, we cannot
blindly copy the value of the field gender, but the suitable
value can be only inferred by inspecting the previous state
of Person before it has been sent (and thus downgraded) to
S1. Notably, in both scenarios, the initial Person sent by S2

is equal to the Person obtained after round-trip migration.
We call such a migration a successful round-trip migration.

In practice, however, round-trip migrations as intro-
duced above seldomly occur. Typically, a service will not
directly return an instance it just received but rather apply
some modification before returning it. This is illustrated by
the third round-trip migration scenario 3© shown in Fig. 3
(on the right). Here, the gender of the Person object sent
by S2 is changed to unspecified (represented by the empty
String value) by service S1. When sending the object back
to S2, we keep this information in terms of the upgrade
migration by copying the empty String value. As opposed
to the first and second scenario, we do not restore the proper
value of the field gender from the previous M2 state of
the Person object, but account for the modification that
has been performed by S1. In other words, the result of
upgrading the modified object is not expected to be equal
to the original one, but the upgraded object rather reflects
the performed modification. In general, when an instance
is modified by a service that works on a particular version
of the data model, we need to account for this modification
by the corresponding co-modification in the other version
of the data model (in our example, modification and co-
modification are identical). We call migrations that account
for such modifications successful round-trip migrations with
modification.

2.2 Research Goals
Our overall goal is to support data model evolution by using
a translation layer serving as a round-trip migration service
which is responsible for the lossless forth-and-back trans-
lation of object-oriented data model instances of different
versions. A translation layer is called successfully round-
trip migrating (with modification) if, for all data model
instances being sent forth and back between services based
on different data model versions, the respective round-trip
migrations are successful (with modification).

As already indicated by our simple example, specifica-
tions of the required upgrade and downgrade migrations
cannot be inferred automatically, but they need to be pro-
vided by developers who are aware of the semantics of the
underlying data model (e.g., the different meanings of the
empty String value of the field gender) and its changes
during an evolution step (e.g., the fact that the differently
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named fields name and firstname are corresponding
fields that convey the same information). Based on this
perspective, we aim at providing a framework that supports
the development of translation layers, and its design shall
meet the following design requirements.

First of all, within migration specifications, a mechanism
is needed to track and provide control over different ver-
sions of a data model at the API level (i.e., a version-aware
IDL). Since our focus is on the evolution of object-oriented
data models and the migration of its instances, we derive the
following design requirement that a migration framework
should fulfill:
(DR1) Interface definition should support versioning at the

model level.
Second, translation layers developed using our frame-

work shall be successfully round-trip migrating (with mod-
ification). Ultimately, for the same reasons for which an
automated inference of translation layers is impossible, this
correctness property of translation layers is left to the discre-
tion of developers using our framework. It must be assured
using classical quality assurance techniques known from
software engineering, notably software testing, which are
out of the scope of our work. However, our framework
must enable assessing all the relevant information which
is necessary to implement strategies which account for the
particularities of round-trip migrations (as discussed for our
motivating example), which we compile into the following
functional design requirement:
(DR2) The framework should enable the development of

translation layers which are successfully round-trip mi-
grating.

On top of a version-aware IDL, this includes a migration
specification language which is easy to understand for a
wide range of practitioners and which makes all the relevant
information (such as version and traceability constructs)
easily accessible.

Lastly, although there is no fully automated way of
inferring migrations, it is evident from our motivating ex-
ample that, in practice, data model evolution and according
round-trip migration scenarios may follow certain recurring
patterns (e.g., creating or deleting fields). Based on this
observation, we derive the following requirement:
(DR3) Developers shall be guided in the development of

migration functions by a catalog of frequently occurring
scenarios.

In essence, the scenarios in such a catalog serve as reusable
design patterns for developing round-trip migrations. The
patterns do not limit development of migration functions,
but are intended to provide exemplary or template solutions
to typical migration problems encountered in practice that
developers may freely utilize.

3 VERSION-AWARE IDL
We first tackle requirement (DR1), as it is fundamental to
defining the base language for migrations development –
the DSL advocated for this purpose is an internal DSL. It is
implemented on top of a general purpose language (the host
language), and reuses its infrastructure (e.g., concrete syn-
tax, type system and run-time system), which is extended
with specific constructs.

1 ClassDec lara t ion :
2 ’ c l a s s ’ I d e n t i f i e r Version ?
3 TypeVariables ? ClassExtendsClause ?
4 Members
5
6 VarStmt : ’ var ’ VarDecl ( ’ , ’ VarDecl ) * ’ ; ’ ?
7 VarDecl : I d e n t i f i e r ColSepTypeRef ?
8
9 ColSepTypeRef : ’ : ’ TypeRef

10
11 TypeRef : I d e n t i f i e r Version ?
12
13 NewExpression = ’new ’ MemberExpression

TypeArguments? ( ’ ( ’ Arguments? ’ ) ’ ) ?
14 MemberExpression = . . . | TypeRef | . . .
15
16 Version : ’ # ’ INTEGER

Listing 1. Simplified grammar snippet with versioning.

1 c l a s s Family #1 { members : Array<Person> Ê }
2
3 c l a s s Person #1 {
4 name : s t r i n g
5 gender : s t r i n g
6 }
7 c l a s s Person #2 {
8 f i r s tname : s t r i n g
9 gender ? : s t r i n g

10 }

Listing 2. Example of a simple N4IDL definition with two classes
in two versions.

Specifically, we introduce a version-aware IDL called
N4IDL. N4IDL is built on the foundations of the typed
ECMAScript variant Eclipse N4JS3, providing a static type
system similar to Java. We motivate the design decision
for this with the wide-spread usage of JavaScript in both
frontend and backend of many web applications. The syntax
of N4IDL is based on JavaScript with type annotations,
using the notation <variable>:<type> as proposed in
ECMAScript 4 [8] and used by, e.g., the typed JavaScript
implementation TypeScript4. Since we only define the API,
the language omits function or method bodies. This is
similar to type definition files as known from TypeScript
for typing plain JavaScript files. Besides classes (introduced
in ECMAScript 2016 [9]) we add the notion of fields, enu-
merations, interfaces and annotations similar to Java.

Syntactically, we introduce versions as type name suf-
fixes, separated by a hash character (’#’). Listing 1 is a
simplified snippet taken from the EBNF grammar: The rules
coloured in magenta stem from N4JS, extending the original
ECMAScript language with static types. The N4IDL version-
ing support is added by the red coloured rules. As we can
see from the grammar the extensions used for versioning
are minimal from a syntax point of view.

For versioning, we rely on a mechanism similar to the Git
version control system5, except that we adopt types instead
of files as the unit of versioning and consecutive integer
numbers instead of commit IDs for identifying versions,
respectively. That is, there is a full API available for each
version, even if not explicitly defined for all types.

As an example of this versioning scheme, consider List-
ing 2. Here, we use three N4IDL type definitions to model
the Families and Person scenario as discussed in Sec. 2.
We explicitly define types Family and Person in version
1, and only Person in version 2. However, Family is
implicitly defined in version 2 as well, it is just assumed
to be the same as version 1 and does not need to be defined

3. eclipse.org/n4js/ 4. typescriptlang.org 5. git-scm.com



IEEE TRANSACTIONS ON SERVICES COMPUTING 5

1 @Migration
2 function upgradeFam ( f1 : Family #1 ) : Family #2 {
3 l e t f2 = new Family #2 ( ) ;
4 f2 . members = migrate ( f1 . members ) ; Ê
5 return f2 ;
6 }

Listing 3. Example of a simple migration comprising a migration
call. The migration of an array automatically invokes the migration
for each element of the array.

explicitly. To achieve this, the type Person referenced by the
field Family.members has no explicitly defined version Ê.
Instead, in the context of Family#1, the referenced type
automatically binds to Person#1, and in the implicitly
defined Family#2, the referenced type binds to version 2.

4 ROUND-TRIP MIGRATION FRAMEWORK

The IDL introduced in the previous section supports the
definition of versioned types. This already provides a more
fine-grained versioning model as compared to mainstream
version control systems. It allows versioning on the level
of types rather than on a per-file basis. To come up with a
fully equipped round-trip migration framework, however,
we also need to operationalise the concept of migration
functions as introduced in Sec. 2 and distilled in (DR2) .

Formally, a migration function can be considered to map
a complete data model instance from one version to another.
However, in order to decrease the complexity of migration
code and to support reuse and modularity, we chose a
different level of granularity for the implementation of our
framework. Instead of leaving the migration developers
with the task of migrating a complete data model instance,
they are supposed to provide migration functions on a
type level. These so-called N4IDL migration functions are a
specific kind of annotated JavaScript functions. In contrast
to their conventional counterparts, they allow for accessing
the migration context at run-time. Furthermore, a dedicated
migration engine controls their execution, which allows to
automatically resolve circular dependencies among migra-
tions. For brevity, we will refer to N4IDL migration func-
tions as migrations.

4.1 Migrations and Migration Calls
An (N4IDL) migration is a global function which migrates
between two versions of a type. Migrations are unidirec-
tional and implemented imperatively. A migration from one
version of a type to another is declared as an annotated
function (keyword @Migration) on the top-level of an
N4IDL file, as shown in Listing 3. In this example, the
migration upgradeFam migrates instances of type Family
in version 1 to type Family in version 2. Migrations are
version-aware, i.e., they can refer to specific versions of a
type. To do so, the hash character ’#’ may be used as part
of type and constructor references. In general, migrations
are responsible for instantiating the returned instances. This
way, migrations maintain full control over the instantiation
process but can also call additional library functions that
perform preliminary automatic migration work (e.g. auto-
matically copy values of fields with the same name).

An important design goal of our framework is modu-
larity of migrations on a type level. More specifically, we
want to avoid redundancy in migration code and allow

developers to reason about the migration of a specific type
in isolation. Therefore, we allow to delegate the migration
of referenced objects from within a migration, while the
migration itself only has to be concerned with the details
of migrating the passed object(s). Using this mechanism,
modularity is established by reducing the responsibility of a
migration function to local fields, while the migration of ref-
erenced objects may be delegated. In Listing 3, for instance,
the migration upgradeFam delegates the migration of the
Person objects representing family members at Ê.

The use of the migrate keyword is referred to as a
migration call. It differs from a conventional function call in
three important aspects:

1. Binding: A migration call is always bound to the most
specific migration among the set of declared migrations
with subtype-compatible parameter types. This is imple-
mented using dynamic dispatch [10], a well-known method
in object-oriented programming systems, where the binding
is based on the run-time type of the migration arguments.

2. Memoization: Multiple migration calls issued for the
same subgraph of the migration input will only be executed
once. All subsequent calls within the same migration task
will return the cached result of the first invocation (see
Sec. 4.3).

3. Fulfillment: Unlike regular function calls, a migration
call may not always directly return the corresponding mi-
grated object but a proxy instead. Proxies are guaranteed to
be replaced by the actual migration results once all migra-
tions triggered in the current migration task have completed.
This allows the migration engine to automatically resolve
circular dependencies among migrations (see Sec. 4.3).

4.2 Context Information in Migrations
A critical feature to support successful round-trip migra-
tions is the ability to use what we refer to as context infor-
mation. As we have seen in the Family/Person example
introduced in Sec. 2, two kinds of context information are
key, namely to (i) access the previous state of an object in
the other revision, and (ii) to check whether a modification
has been performed in the current revision. To accommodate
this, N4IDL migrations may access additional context infor-
mation via the context identifier; the former information
may be accessed through transparently-managed trace links,
and the latter information is provided through what we call
modification detection.

Trace Links. To allow for accessing a previous revision of
an instance during a later stage in the round-trip migration,
the run-time implicitly establishes trace links between the
input and return arguments of a migration call. These trace
links allow to recover potentially lost information from a
previous revision of an object, e.g., when upgrading an
object that has been downgraded in an earlier migration.
To illustrate the usage of this tracing mechanism, Listing 4
shows a possible upgrade migration for the Family/Person
scenario. Here, by using trace links, the migration recovers
an earlier value of the field gender. In a round-trip, an
instance of Person#2 is first migrated to version 1. This
downgrade migration implicitly creates a trace link between
the original and the migrated instance. Later on, the instance
is migrated back to version 2 via the shown upgrade
migration. During the upgrade, it is now possible to access
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1 @Migration
2 function upgrade ( p1 : Person #1 ) : Person #2 {
3 l e t p2 = new Person #2 ( ) ;
4 p2 . f i r s tname = p1 . name ;
5 / / use t r a c e s t o r e s t o r e p2 . g end e r
6 l e t t = contex t . getTrace ( p1 ) [ 0 ] as Person #2 Ê
7 p2 . gender = t ? t . gender : p1 . gender ;
8
9 return p2 ;

10 }

Listing 4. Accessing a trace link via the migration context.

1 @Migration
2 function upgrade ( p1 : Person #1 ) : Person #2 {
3 l e t p2 = new Person #2 ( ) ;
4 / / use t r a c e s t o r e s t o r e p2 . g end e r
5 ( . . . )
6 / / c h e c k f o r m o d i f i c a t i o n
7 i f ( contex t . isModif ied ( p1 , ”gender” ) ) {
8 p2 . gender = p1 . gender ;
9 }

10 return p2 ;
11 }

Listing 5. Checking for the modification of a field value via the
migration context.

the previous revision of the object through the trace link that
was created when upgrading Ê. This allows the migration to
recover the earlier value of gender, if required. Also note
the notation ”[0]”, which specifies which of the inbound
trace links to follow. In cases of migrations with multiple
parameters, the number of incoming trace links may be
greater than one.

Modification Detection. Although we can retrieve a pre-
vious revision via a trace link, a modification of an instance
may have corrupted this relation on a semantic level, i.e.,
the previous revision of an object may no longer provide
an up-to-date representation of the instance. An example of
this is scenario 3© of our running example (cf. Fig. 3), where
gender is modified in version 1. As a consequence, it no
longer suffices to restore an older value from a previous
revision. Instead, our framework provides a modification
detection feature as illustrated in Listing 5. In addition to
using trace links, the migration can check for a modification
of gender and adapts its migration strategy accordingly.
The isModified method indicates whether a field has been
modified in the current version of a migrated instance. For
a more detailed discussion of a migration that relies on both
trace links and modification detection, we refer to Sec. 5.1.2.

These two types of context information are important
features for implementing round-trip migrations. Trace links
allow us to inspect previous revisions of the migrated in-
stances, and modification detection gives us further insight
on the explicit modification intent. The actual complexity
however, lies in using this information to correctly handle
instance modifications that are performed in the current
model version. As pointed out, accessing the previous
revision via a trace link potentially means accessing an
outdated instance, since modifications only apply to the
current model version. A successful round-trip migrating
strategy (cf. Sec. 2) must map the modification intent back
to the original model version. This is discussed in greater
detail in the scenario catalog presented in Sec. 5.1.

Finally, note that a migration context as such can be
made fully portable and passed along network requests
as an additional payload. This is especially relevant for
scenarios where a translation layer may be a service on its

own. Bundling the context with requests increases the size of
the overall payload, but it also avoids the need for elaborate
garbage collection schemes and session management as part
of the translation layer.

4.3 Execution of Round-Trip Migrations

Most often, we not only want to migrate a particular ob-
ject, but a larger network of objects connected through
references, i.e., the transitive closure of the object which is
to be migrated. Migrating such an object graph includes
determining the order in which migrations are executed.
While a basic order of execution is given by the nesting of
migration calls, we need to ensure during execution that
multiple references to the same subgraph (cf. Memoization)
and cyclic dependencies (cf. Fulfillment) are resolved cor-
rectly. For this, we differentiate three different types of object
graph expected as migration input:

1. Object Trees. The input object graph has the properties
of a directed tree. Since there is exactly one path from some
root node to any other node of the graph, all objects can be
migrated by directly fulfilling all migration calls.

2. Directed Acyclic Object Graphs. The input object graph is
a directed acyclic graph. That is, there may be nodes which
can be reached from the root node by more than one path
and whose duplicate migration must be prevented. Multiple
migration calls with the same input must therefore return
the same instance (cf. Memoization). This is achieved by
caching intermediate migration results by their arguments.

3. Cyclic Object Graphs. The input object graph is a
directed graph with cycles. The cycles in the graph translate
to cyclic dependencies among migrations. In particular, a
migration may depend on its own output and we therefore
cannot guarantee the immediate fulfillment of all migration
calls. Instead, our framework detects such cases and returns
a proxy result. These proxy results allow us to break cyclic
dependencies among migrations, and the case of migrating
cyclic object graphs can be reduced to case 2 of acyclic
graphs, as described above. To restore the cyclic structure
once all migrations have returned, the migration engine
replaces the proxies by a reference to the corresponding
part of the migration output. This guarantees the eventual
restoration of the original cyclic structures in the migration
output. However, this approach imposes a restriction on
migrations operating on a cyclic object graph. In the case
of cyclic dependencies among migrations, operations on the
result of migration calls will throw a runtime exception if
the corresponding migration result is a proxy. To account for
this, developers should anticipate whether they are dealing
with cyclic structures and adapt their code accordingly.

To summarise, our migration engine employs the follow-
ing strategy. Given a migration call for a specific subgraph
of the migration input, the following cases are considered
based on the current state of the overall migration task:

• Return proxy, if the specified subgraph is currently being
migrated.

• Return cached result, if the specified subgraph has al-
ready been fully migrated.

• Trigger the migration, otherwise.
The initial migration request to the translation can be consid-
ered as a root migration call. Developers using a translation
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Fig. 4. The N4IDL development environment demonstrating the use of unit testing as well as the visualisation of round-trip migrations.

layer specify an entry point to the object graph to migrate.
Starting with such an entry point, migration calls are pro-
cessed as described until all subsequently issued migration
calls are fulfilled. Last, a post-processing step replaces proxy
results by the corresponding parts of the migration result,
re-establishing potential reference cycles.

4.4 Semantics and Implementation

Fig. 5 illustrates key components as well as the correspond-
ing information flow. Semantically, N4IDL is largely iden-
tical to ECMAScript. Just as in N4JS, all type expressions
(used for static type information) are simply removed dur-
ing compilation. Version information is compiled to special
identifiers (e.g. B#2 is transformed to B 2). This is also done
for references omitting the version information (where the
version is required and derived from the context) and for
implicitly defined versions.

For execution of migration function bodies, the seman-
tics also correspond to those of regular top-level functions
in ECMAScript. However, to enable automatic selection and
dispatching of the correct migration functions, additional
code is generated which registers all migration functions
with the framework’s runtime library. This runtime library
implements the execution model of migration functions
as described above, supporting migration calls, trace links
and modification detection via the designated migrate
and context identifiers respectively. To resolve migration
functions, the library implements dynamic dispatch [10],dy-
namically binding a migration call to the best matching
migration function (see step “1. Binding” in Sec. 4).

The runtime library itself is also implemented in EC-
MAScript, meaning the resulting bundle of runtime library
and translation layer can be executed using any JavaScript
interpreter. If the translation layer is part of the client (cf.
Fig. 1, Í), it can be executed in the browser. If the translation
layer is deployed on the server side (cf. Fig. 1, Ê - Ì), it
can be executed by the Node.js runtime. An architectural
overview is illustrated in Fig. 5.

Versioned API +
Migrations

N4IDL JS

Translation
Layer

JS

Runtime
Library

Node.js Browser

N4IDL 
Compiler

Fig. 5. The N4IDL compiler compiles a versioned API and migration
code to ECMAScript. With the runtime library, the resulting translation
layer can then be deployed to any JavaScript-capable environment.

4.5 Tool Support
As a derivative of the general-purpose programming lan-
guage N4JS, N4IDL comes with a fully-featured IDE based
on the Eclipse Platform6. This enables features such as
syntax coloring, hyperlinks, content proposals and an incre-
mental builder. We also extended the Eclipse N4JS transpiler
by compilation support for N4IDL to ECMAScript, which
allows us to execute migrations. Furthermore, it fully inte-
grates with the unit testing capabilities of N4JS, allowing to
test migration code systematically.

We further provide a designated view for the visu-
alization of round-trip migrations to support developers
in debugging their translation layer implementations. The
view visualises object graphs and according trace links in
different stages of a round-trip migration. Fig. 4 illustrates
the N4IDL development environment, demonstrating the
use of unit testing as well as the visualisation of round-trip
migrations within the development process.

5 VALIDATION

To demonstrate the effectiveness of our round-trip migra-
tion framework we perform an evaluation with respect
to three core aspects: (1) We implement translation layers
for an extensive catalog of evolution scenarios introduced
by Hermannsdörfer et al. [6]. This part of our evaluation

6. eclipse.org/eclipseide/
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TABLE 1
An overview of all round-trip migration scenarios in our catalog.

No. Name Description Trace Links Mod. Detec. Migration Execution Time
1 Rename Field The name of a field changes. 82.5±16.263ms
2 Create/Delete Field (independent

field)
A new functionally independent
field is added/removed to/from a
class of the data model.

3 81.0±8.660ms

3 Create/Delete Field (dependent
field)

A field is removed from a class of the
data model (or added respectively).
The field is functionally dependent
on other still-existing fields.

3 66.0±5.657ms

4 Create/Delete Reference A field of reference type is removed
from a class of the data model (or
added respectively).

3 58.0±0.000ms

5 Declare Class as Abstract A class is declared abstract/concrete. 3 91.0±29.473ms
6 Add/Remove a Supertype A new super type is declared for a

classifier (or removed respectively).
3 29.5±0.707ms

7 Generalize/Specialize Field Type The type of a field is generalized
to a super type or specialized to a
subtype respectively.

3 66.2±21.194ms

8 Change Field Multiplicity: 0..1 - 1 The multiplicity of a field is special-
ized from multiplicity exttt 0..1 to
exttt 1 or generalized from exttt 1 to
exttt 0..1.

3 3 21.0±2.828ms

9 Change Field Multiplicity: 0..n - 0..1 The multiplicity of a field is general-
ized from 0..1 to 0..n or specialized
from 0..n to 0..1.

3 3 65.5±22.643ms

10 Change Field Multiplicity: 0..n - 1 The multiplicity of a field is special-
ized from multiplicity exttt 0..n to
exttt 1 or generalized from exttt 1 to
exttt 0..n respectively.

3 3 52.0±7.251ms

11 Pull Up / Push Down Field A field is pulled up into a superclass
(or pushed down respectively).

18.5±2.121ms

12 Split/Merge Type Based on specified criteria, instances
of a type of one model version, trans-
late to different (unrelated) types of
the other model version.

3 46.5±6.364ms

13 Specialize/Generalize Superclass The super type of a class is changed
to one of the super type’s subclass-
es/superclasses.

3 20.5±4.950ms

14 Extract/Inline Superclass A new superclass is extracted from
the set of fields of an existing type.

3 3 35.2±8.221ms

15 Fold/Unfold Superclass A new superclass is declared for a
type. Common fields of the super-
class and the type are then removed
(folded into superclass).

19.5±3.536ms

16 Extract/Inline Subclass A selection of fields is extracted into
a new subclass (or inlined).

3 3 44.7±7.506ms

17 Extract/Inline Class A selection of fields is extracted into
a new delegate class.

18.5±2.121ms

18 Fold/Unfold Class A selection of fields is folded into an
existing delegate class.

20.5±6.364ms

19 Collect Field over Reference A field is collected/pushed over a
reference.

3 3 36.2±14.523ms

20 Split/Merge Fields A type is split by moving its fields to
two new types and correspondingly
replacing all references to it by refer-
ences to the new types.

24.0±6.245ms

demonstrates that our framework can effectively handle a
wide range of realistic evolution scenarios. Given this set
of implemented catalog migrations, (2) we perform micro-
benchmarking of running round-trip migrations, providing
an intuition of how much runtime overhead a translation
layer introduces. Last, (3) we demonstrate applicability in
practice over a characteristic case sourced from an industrial
partner, which entails the evolution of a data-intensive real-
world e-commerce web application.

5.1 Catalog of Migration Scenarios

To assess the effectiveness of our framework in a diverse
range of evolution scenarios, we have successfully imple-
mented a large catalog of what we call round-trip migration
scenarios. Each scenario consists of a basic edit operation on
a data model, a discussion of the change induced by the edit
operation, and suitable N4IDL migrations that implement

a corresponding translation layer using our framework.
Where necessary, a scenario also includes a discussion of
different variations and potential modifications inbetween
migrations. An overview of our catalog is presented in
Table 1. Each scenario has (i) a unique identifier, (ii) a
name, (iii) a description of the corresponding data model
edit operation(s), and an indicator whether (iv) trace links
or (v) modification detection are used for employing a suit-
able round-trip migration strategy. Due to space limitations,
we only discuss one selected scenario here. The interested
reader is kindly referred to the online appendix7.

5.1.1 Evolution Scenarios

The evolution scenarios comprised by our catalog are based
on the set of edit operations collected by Herrmannsdörfer

7. The entire catalog is available as a technical report in supplemen-
tary material: github.com/AnonAuth/RoundTripMigrations

github.com/AnonAuth/RoundTripMigrations
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1 c l a s s A#1 { a : s t r i n g }
2 c l a s s A#2 { a ? : s t r i n g }

Listing 6. The original and revised data model of scenario 8.

1 @Migration function upgrade ( o1 : A#1 ) : A#2 {
2 l e t o2 = new A#2 ( ) ;
3 l e t prevRev = contex t . getTrace ( o1 ) [ 0 ] as A#2
4 / / I f ”A” has not be en m o d i f i e d ,
5 / / and a p r e v i o u s r e v i s i o n can be o b t a i n e d
6 i f ( prevRev != undefined &&
7 ! contex t . isModif ied ( o1 , ”a” ) ) {
8 o2 . a = prevRev . a ; / / r e u s e t h e p r e v i o u s v a l u e o f

” a ”
9 } else {

10 o2 . a = o1 . a ; / / o t h e r w i s e copy o v e r ” o1 . a ”
11 }
12 return o2 ;
13 }
14 @Migration function downgrade ( o2 : A#2 ) : A#1 {
15 l e t o1 = new A#1 ( ) ;
16 / / use d e f a u l t v a l u e in c a s e ” o2 . a ” i s n u l l
17 o1 . a = o2 . a | | ” d e f a u l t ” ;
18 return o1 ;
19 }

Listing 7. The migration functions of scenario 8.

et al. [6]. Although their work addresses model migration
in response to metamodel evolution (see Sec. 6.3), the
presented edit operations on metamodels correspond to
those on object-oriented data models. As a consequence,
we regard their collection of evolution scenarios as a useful
external benchmark to validate our framework.

5.1.2 Detailed Description of a Selected Scenario
As an example, we discuss round-trip migration scenario 8
Change Field Multiplicity: 0..1 - 1 of our catalog. This also
demonstrates how to use our framework to implement a
concrete migration strategy. In the scenario, the multiplicity
of a field is changed from 1 to 0..1 or vice versa, thus
allowing (multiplicity of 0..1) or disallowing (multiplicity
of 1) null values. An example of this is given by the N4IDL
declarations in Listing 6, where version 1 of class A declares
its field a to be mandatory while it is optional in version 2.
Note how this scenario directly relates to parts of our initial
example in Fig. 2, where field gender is declared optional.

The respective migration functions are shown in List-
ing 7. In an M1 7→ M2 7→ M1 round-trip migration, we
must ensure that a potential null-value of field a in version
2 is translated to a default value in version 1. Similarly,
we must ensure that an M2 7→ M1 7→ M2 round-trip
migration restores the null-value in case the instance has
not been modified in version 1. To realise this, we must
employ the modification detection feature of our framework
to differentiate the case of the actual value ”default” and the
default value ”default”. The former should be migrated as is,
while the latter should be translated to a null-value.

5.1.3 Catalog Results
Given the catalog of evolution scenarios introduced by
Herrmannsdörfer et al. [6], we were successful in applying
our framework to implement translation layers for a diverse
set of scenarios, as listed in Table 1. All of the implemented
translation layers implement the idea of a successful round-
trip migrations (with modification) as introduced in Sec. 2.1.
We believe this serves as strong evidence that our frame-
work is indeed effective in addressing the problem of round-
trip migration. We also consider this as confirmation that

our theoretical model of round-trip migrations is feasible in
the context of a wide range of different evolution scenarios.
Lastly, given the overview in Table 1, we can also see that
the notion of trace links as well as modification detection are
essential features of our framework, required across a wide
range of different scenarios.

5.1.4 Pattern-Oriented Migration Development
Next to serving as an evaluation of our framework, we
consider our catalog of migration scenarios as a useful
resource for migration development. Rather than conceiving
migrations in an ad-hoc way, developers can reuse the
provided solutions to recurrent migration problems. This
idea of pattern-oriented development is well-known in the
context of software design and we see great potential in
applying a similar approach to migration development.

However, please note that we do not claim our catalog
of evolution scenarios to be complete. This would require
that (i) any difference between two versions of a data model
can be decomposed into edit operations comprised by the
catalog and (ii) that the migration strategies for those edit
operations can be composed into a migration strategy which
is successfully round-trip-migrating at the composite level.
As argued by [6], such completeness is hard to achieve as
higher-level changes often entail migration strategies that
differ from the simple concatenation of the strategies that
fit their elementary edit operations. This is particularly the
case for overlapping edit operations, an example of which
will be considered in the case study of Sec. 5.3.

While some scenarios may be applicable exactly as pre-
sented, others may be more suitable to demonstrate abstract
aspects. As will be evident within our case study (Sec. 5),
it often helps to first consider related round-trip migration
scenarios before implementing a concrete migration strat-
egy. Generally, the catalog remains an open collection of
elementary round-trip migration scenarios. In the future, it
may be extended by additional scenarios based on practical
experience or new features in the underlying IDL.

5.2 Micro-Benchmarking of Catalog Scenarios

Our work mostly relates to the use of translation layers as a
middleware between services, and we seek to gain insights
on the overhead of using such a translation layer imple-
mented using our framework. In practice, we can expect
situations in which we migrate a large number of small
instances. This is typical in the web service setting, due to
bandwidth limitations. Micro-benchmarking – performing
tests designed to measure a very small performance unit –
fits our context particularly well, since scenarios represent
well-defined units, while measurement entails evaluating
execution time. To obtain a representative set of scenarios,
we rely on our catalog discussed in the previous section.

We measure the average migration execution time of
all the translation layers implemented in our catalog. All
experiments were run on a 2020 Apple MacBook Pro with
a 2.3 GHz Quad-Core Intel Core i7 processor and 32GB
of main memory, using Node.js 16.4.2. The benchmarking
script relies on Node.js’s process.hrtime to measure
execution time and first runs 50 warm up iterations per
RTM, to prevent just-in-time compilation overhead during
the actual benchmarking. Further, we only measure the
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TABLE 2
Occurrences of observable model changes and related scenarios of

our round-trip migration catalog.

Σ Change Related Scenarios
4 Rename Field ID 1: Rename Field
2 Change Field Multi-

plicity from 0..1 to 1
ID 8: Generalize Field Multiplic-
ity from 0..1 to 1

1 Change Field Multi-
plicity 0..n to 1

ID 10: Generalize Multiplicity
0..n to 1

3 Add field (function-
ally independent)

IDs 2/3: Create/Delete Field
(functionally independent/de-
pendent field)

1 Change super type ID 6: Add/Remove a Supertype
1 Change type of a field ID 7: Generalize Type of Field

time of executing the migrations, e.g. excluding time spent
modifying instances in between.

We report the migration time of performing the complete
round-trip. We perform each migration for a total of 100 iter-
ations and report the mean execution time. Further, in case
a scenario consists of multiple variations (e.g. directions,
different modifications), we aggregate the mean across these
variants and indicate the corresponding standard deviation.

We report the results of our experiments in the last
column of Table 1. The results show that all translation
layers migrate the corresponding instances in well under
100ms with a total average of 45ms±0.023. Further, the use
of trace links appears to incur a small overhead as compared
to scenarios which do not rely on traceability. Given the
architecture of our migration framework, we expect such
low execution times, since all migration code is compiled
to plain JavaScript which can be executed efficiently with
modern JavaScript interpreters. The only overhead incurred
by our framework relates to dispatching migration calls at
runtime and traceability features.

5.3 Case study: E-commerce Web Application

As the final part of our evaluation, we conduct a practical
case study by implementing a concrete translation layer in
a realistic setting using our migration framework. We chose
a real-world e-commerce web application sourced from an
industrial partner. The application implements online shop
and reservation systems, the overall development of which
comprises more than 10 person years.

The web application uses an API for the communication
between web client and server. The data exchanged consists
of entities such as orders, products, or reservations. We
extracted a data model comprising a self-contained set of
86 classes and 22 enum types. In addition, we restored a
three month old version of the data model from the version
control system. The current and the restored version formed
our representative model versions 1 and 2.

We analyzed the model changes and consulted our cat-
alog of migration scenarios as introduced in Sec. 5.1. From
the given model versions, we extracted a total of 12 distinct
changes affecting 7 different type declarations, all of which
could be related to at least one of the catalog’s scenarios.
Overall, we identified 6 different types of edit operations as
shown in Table 2. Based on the set of observed changes and
the exemplary translation layers implemented, we designed
an initial migration strategy. In order to handle the 12
data model changes, we implemented 15 custom migration

functions. In sum, the migrations consist of 191 lines of code
(leaving out empty lines and comments).

In most cases, the changes occurred in an isolated atomic
fashion. Thus, it was possible to almost directly reuse
exemplary code snippets from the respective scenarios as
templates. In some cases, however, multiple changes over-
lapped (e.g., the type and the name of a field were changed).
For those, the implementation of corresponding migration
strategies required special attention. As discussed earlier
in Sec. 5.1.4, a migration strategy for overlapping model
changes cannot directly be inferred from the round-trip sce-
narios of its atomic constituents. However, the related sce-
narios provided useful insights which facilitated the design
of a suitable strategy for such overlapping model changes.
Lastly, types which did not evolve had to be handled as well.
For those cases, we adapted our system to provide a generic
fallback migration, which directly replicates instances from
one model version to the other by copying. Overall, the
development of the translation layer took around 1 person
week, including testing and debugging.

For some implemented migrations, we leveraged trace-
ability information. According to our own development
experience, the use of trace links was comparatively intu-
itive whereas using modification detection typically entailed
more complex behavior. This was due to the fact that in
practice, modification detection can have side-effects that
are not initially anticipated by the developer. In addition to
the support on a methodological level, we greatly benefited
from the tool support of our framework. The visualization of
round-trip migrations in terms of object graphs emerged as
an aid for spotting inconsistencies and tracking trace links.

5.3.1 On Correctness through Automated Testing

To investigate the correctness of the implemented transla-
tion layer with respect to the idea of successful round-trip
migrations (cf. Sec. 2.1), we used it to execute a large number
of distinct migrations (∼400,000 migrations). We leveraged
a random instance generator to obtain a large amount of
random test data that exhibited an appropriate degree of
diversity (e.g., graph size, cycles, null-values, etc.). The
generator was configured to generate large object graphs,
with an average of 32 objects per graph and a maximum
of 1600 objects in one case. Using automated testing, we
ran a large number of migrations with the general test as-
sertion that we must never observe any loss of information,
i.e., round-trip migrated instances are equal to the original
instances.

For round-trip migrations with modification, we also
implemented random generators for instance modifications.
However, to automate the verification of successful round-
trip migrations with modification, we also needed to recre-
ate the corresponding instance modifications in the other
model version. Using a modification model, we could imple-
ment a generic transformation that bidirectionally translates
a modification of one model version to a co-modification
of the other version. This allowed us to also check for
successful round-trip migrations with modification in a fully
automated fashion. Using this method, we again generated
random instance data as above, including mutations with
an average number of 9 modifications per test input and a
maximum of ∼1200 modifications in one case.
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By running a large number of round-trip migrations
with our implemented translation layer, we aimed at as-
suring evidence, yet not formal proof, of robustness and
correctness with regard to our notion of successful round-
trip migrations (with modification). In this testing phase, we
could not observe any loss of information during round-trip
migrations. Considering the number of executed migrations,
we are therefore confident that the implemented translation
layer behaves as desired.

5.4 Discussion and Limitations
We believe to have demonstrated that by virtue of the
transformational approach advocated, (i) definition and de-
velopment of migration functions can be performed and (ii)
execution of migrations can be executed timely. Furthermore
and from a methodological point of view, (iii) development
can be supported by the catalog since it addresses typical
scenarios. In the following, we reflect upon design require-
ments DR1-DR3, and discuss limitations of our approach.

As per DR1, our evaluation shows that our migration
framework is effective for a wide range of known object-
oriented evolution scenarios. This was the focus of the
case study of Sec. 5.3 – we believe this was demonstrated
over a real-world migration scenario based on a realis-
tic and comparatively large data model. Furthermore, we
employed automated testing to assess correctness of the
implemented translation layer, addressing DR2. Besides
providing a version-aware IDL, the migration specification
language provided makes all relevant information (such as
version and traceability constructs) easily accessible to de-
velopers. Regarding DR3, the reusable design patterns in the
catalog represent typical, frequently occurring data model
evolution problems along with their template solutions,
that developers may utilize to develop migrations. Finally,
by performing micro-benchmarking we demonstrated that
migration execution time is low, since we can rely on the
performance of modern JavaScript interpreters.

Regarding validity of our results, we identify construct,
internal and external threats. Although we could success-
fully relate all observed model changes in the case study
considered to scenarios in the catalog, our discussion of
overlapping model changes still applies (Sec. 5.1.3). We
especially note that the catalog is not intended to be com-
plete, and future applications may enrich it with further
migration scenarios occurring in practice, or in industrial
applications. This manifests as a threat to construct validity
of our approach. On a functional level, we could validate the
correctness of our translation layer through extensive test-
ing. This further confirms the applicability of requirement
DR2, although the lack of a formal proof of correctness can
be considered as an internal threat to the validity of our
results. We also note that the number of observed changes,
the time period of change as well as the model size were
relatively limited. This means that the results of our case
study specifically may not apply to other cases, which is a
threat to external validity. Finally, although the quantitative
micro-benchmarking performance results obtained demon-
strate timely migration executions, aggregate, application-
level performance effects may naturally differ. This is a com-
mon issue raised in domains where micro-benchmarking is
employed to address variability and diversity of cases. We

identify application performance profiling as a promising
avenue of future work, where the priority would be to assess
a wide range of composite applications making use of migra-
tions, in tandem with micro-benchmarks, as employed, e.g.,
in notable relevant cloud approaches [11], [12].

Performance may become an issue if a lot of versions
are to be managed simultaneously. E.g., given 10 versions,
this may lead to 9 chained migrations (from 1 to 2, 2 to
3 and so forth). However, in practice, we assume three
factors mitigating that problem. First, we assume that the
service is run in the latest version (since the change of the
service is the very reason for the new version in the first
place). That is, only clients (using different API versions)
need to be adapted. That means that when a new version is
introduced, existing migrations may be rewritten in order
to directly translate to the latest version (e.g., 1 to 10,
2 to 10 and so forth). Second, changes usually apply to
different parts of a model or API. If changes of the API
are disjoint, their respective migrations do not affect each
other. So, even if a change leads to a new version, many
use cases would be unaffected by that change. Third, the
introduction of a transformation layer should be combined
with some kind of external version management. That is,
eventually some versions may be declared deprecated and
unsupported, even though it would be possible by means
of transformations layers. This would limit the amount of
migrations to be maintained by the API team and reduce
the number of possibly chained migrations.

6 RELATED WORK

Different instances of the problem of data model evolution
and instance migration have been studied in many differ-
ent fields. We first discuss parallels to database systems
(Sec. 6.1), which tackle very similar problems such as view
updating and schema evolution. Next, we discuss web
service evolution (Sec. 6.2), which is situated very close to
our method due to our JavaScript-based stack and notion
of an IDL. Lastly, we review recent work on model-driven
engineering (Sec. 6.3), which our framework is based on
regarding our notions of migrations and traceability.

6.1 Schema Evolution, Versioning, and View Updates
The problem of synchronizing queries and views upon a
schema evolution has been tackled as early as 1982 [13],
and appears in a wide variety of application domains
under various terms; view/query rewriting, change prop-
agation, mapping adaptations, or co-transformations within
the broader research context of bidirectional transforma-
tions [14] – see [15] for a comprehensive survey. Essen-
tially, when a database schema is modified, all the code
that interacts with the database must be changed accord-
ingly, and co-change analyses can be viable to automate
or assist with database application evolution [16]. Schema
evolution generally refers to the process of facilitating the
modification of a database schema without loss of existing
data or compromising data integrity [17]. The main aim,
however, is to merely update instance data in response to
schema changes, which inherently differs from our goal of
continuously round-tripping between versions of an API.

The problem within database research is often solved
by introducing a data management layer which allows
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the schema of a relational database to evolve without the
need to rewrite database queries in the application code,
e.g., [18]. Data management runs as an abstraction layer
at runtime, handling queries and data exchange between
the user interface and a database. Recent advances target
specific database technologies and focus on runtime evolu-
tion [19]. Our data translation layer component follows the
same principles, albeit from a model-driven perspective [20]
– instead of managing database access, we operate on the
data model of the web service, for example exposed through
Object Relational Mappers. We treat data representations as
data models, and express evolution in terms of models – not
database schemas – operating at the level of the Web API.

Schema versioning further implies the ability to access the
stored data via arbitrary versions of a schema [21]. One ap-
proach of special interest to us is CLOSQL [22]. Here, devel-
opers may manually implement so-called update and back-
date functions taking care of instance migrations. CLOSQL
even implements limited support for mechanisms that we
would consider traceability features. However, no method-
ological support in form of a catalog of re-usable migration
patterns is provided to assist developers.

The field of view update translation [23] addresses the
problem of performing updates on database views which
need to be propagated to the underlying instance data or
vice versa [24]. Gottlob et al. [25] present the concept of
dynamic views, which is a database view together with an up-
date policy. This is comparable to our concept of translation
layers. In recent work, this idea is further complemented
by the use of bidirectional transformation languages from
which update policies can be automatically inferred [26],
[27], [28]. However, a tacit assumption is that there is always
a loss of information from the source to a view, which does
not apply in our more general case of data model evolution.

6.2 Web Services Evolution and Specification

Within web services, the problem of interface evolution
has been identified as the chain of adapters architectural
pattern [29], in order to maintain backwards-compatibility
with forward changes within a services interface. It concerns
keeping a common data store to achieve a consistent state
over different versions, with the goal to avoid code duplica-
tion by incrementally extending the interface.

A runtime approach where data translation manifests
is VRESCo [30], where a versioning mechanism that con-
siders revision management on registry- and client-side is
used. Moreover, a general classification of service versioning
concepts is presented. VRESCo introduces tags for service
versions, giving rise to directed version graphs representing
dependencies. Recent advances on web service evolution
have also combined concepts from software engineering,
e.g., through type based slicing [31] with the objective of
allowing multiple versions of a service to be deployed
simultaneously while reusing code between versions. We
use a similar tagging abstraction as VRESCo – but we
focus on transformation of data models of modern Web
APIs, instead of transforming code [31]. Moreover, we target
JavaScript as a supported language within our framework.
This design choice reflects its widespread use in modern
web development, quite often characterised by absence of

e.g., full-blown WSDL descriptions, where changes can also
be extracted [32].

Regarding Web APIs in particular, the OpenAPI Specifi-
cation and the RESTful API Modeling Language8 are two
popular languages for specifying a Web API by means of
an IDL. Frameworks such as Google’s Protocol Buffers9,
Apache Thrift or Avro 10 also come with their own IDLs,
supporting API versioning and providing annotations (e.g.,
deprecated) in order to change an API in a backwards com-
patible way. Avro provides limited support for automatic
translation between different versions, such as setting new
fields to default values. However, since Avro’s IDL does
not include object-oriented concepts, multiple scenarios de-
scribed in our catalog are not supported.

In the literature, the notion of API evolution often refers
to adding and removing functions or methods in classical li-
braries, or to change the signatures of their declarations [33],
which we explicitly excluded from the scope of this paper.
Here, approaches such as [34], [35], [36], [37], [38] have been
developed to help client developers in the adaptation to
breaking API changes, yet focusing on library method invo-
cations while ignoring the data model evolution problem.

Recently, Seco et al. have also identified the problem of
evolving service interfaces and interaction among different
data model versions [39]. Based on a formal compatibility
model, they automatically generate translation layers for
adding/removing/renaming fields. However, their work
remains limited to comparatively small edit operations ac-
cording to their notion of compatibility. In contrast, our
framework addresses the more general case of manually
implementing translation layers which bridge a much larger
gap, including more breaking changes which can only be
solved by manually designed migrations (cf. Sec. 2.2).

6.3 Model Co-Evolution and Synchronization

Multiple approaches have been proposed addressing the
migration of instance models in response to metamodel
changes, referred to as metamodel evolution and model co-
evolution [40]. Most of the work is inspired by research on
schema evolution and versioning. The COPE framework de-
veloped by Herrmannsdörfer et al. [41] proposes a coupled
evolution of metamodels and models using a pre-defined set
of operators. Change-based approaches as, e.g., proposed
by Cicchetti et al. [42], analyze the metamodel changes and
classify them into resolvable and non-resolvable, the latter
ones have to be handled by custom migration strategies
or interactively during migration. A search-based approach
has been proposed by Demuth et al. [43]. The aim is to co-
evolve models by performing a constraint-based search to
restore conformance with the changed metamodel using an
off-the-shelf solver. This enables a fully automated migra-
tion but, in general, the results of such automated migration
or repair are not guaranteed to be the ones desired by
the developer [40], [44]. Similar to Herrmannsdörfer [41]
and Cicchetti [42], we follow a semi-automated approach
in which developers need to define a migration strategy
which is then applied during the automated execution of

8. github.com/OAI/OpenAPI-Specification, raml.org
9. developers.google.com/ protocol-buffers
10. thrift.apache.org, avro.apache.org
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migrations. We draw on the work of Herrmannsdörfer et al.
using their catalog [6] as a basis for our selection of relevant
edit operations on object-oriented data models. However,
our work differs from all of the aforementioned approaches
in two important aspects: Firstly, none of the approaches
provides a fine-grained versioning support for metamodels
but they rely on external versioning support of a version
control system. Secondly, their goal is to merely update
instance models in response to metamodel evolution, which
inherently differs from our goal of continuously round-
tripping between different versions.

Finally, the idea of translation layers can be regarded
as a special case of model synchronization, which aims at
synchronizing models representing different views or levels
of abstraction. This is typically supported by dedicated
(bidirectional) model transformation systems such as Triple
Graph Grammars (TGGs) [45] or the Atlas Transformation
Language (ATL) [46]. Bidirectional model transformation
cases which are similar to ours have been used as bench-
marks at the Transformation Tool Contest [7], [47], yet
in a very abstract setting which is disconnected from the
practical and technical aspects of the domain of web-based
services and their APIs. Incremental synchronizations have
been proposed in [48], [49], [50], and Getir et al. [51], [52]
have worked on recommender systems that tackle synchro-
nization scenarios where the synchronization strategy is
non-canonical. Madari et al. [53] and Getir et al. [52] em-
phasize the explicit use of trace models between interrelated
models to facilitate incremental model synchronization, and
the transparent management of trace links being accessible
through dedicated language constructs is a common concept
in multiple model transformation languages [54], [55], [56].
In contrast to these approaches, which operate on models in
the context of model-driven development, our translation
layers work on the API level. We do not migrate all the
elements (e.g., stored in a database) at once but instead only
operate on a subset. That is, we only have to migrate the
data exchanged between components, e.g., the parameters
used by endpoints. Furthermore, (web) developers tend to
be less familiar with declarative transformation approaches
such as graph transformation. Since analytical facilities such
as confluence or termination analysis of a closed transforma-
tion system cannot be transferred to translation layers, we
have chosen a more practical approach in which migrations
are implemented using a widespread imperative language.
However, going forward we also see our work as a founda-
tion for a possibly more declarative migration language on
top of our framework.

7 CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of service API
evolution, focusing on the evolution of the common data
model shared between system components. Instead of en-
suring backward compatibility during data model changes,
we proposed the usage of translation layers facilitating the
communication of system components relying on different
versions of the data model. Fine-grained versioning of type
definitions and the imperative specification of migration
functions using JavaScript, as provided by our developed
migration framework, seem to be a promising approach
of implementing such a translation layer. Furthermore, our

dedicated migration engine establishes migration modular-
ity on a type-level, which decreases the overall complexity
of implementing translation layers significantly.

For all 20 edit operations of a commonly accepted set of
edit operations on object-oriented data models taken from
the literature, we have been able to define successful round-
trip migration strategies. The respective scenarios have been
compiled into a catalog and serve as reusable patterns for
concrete migration strategies. We were able to validate the
approach in a non-trivial case study with an API defining
more than 100 types. All the API changes that occurred
during a development period of over three months could
be related to scenarios of the catalog, and we were able
to implement corresponding round-trip migration strate-
gies based on the provided templates. Finally, quantita-
tive micro-benchmarking performance results demonstrated
timely execution of migrations.

To date, the task of identifying model changes and
writing migrations is left to developers. As for future work,
we plan to simplify this task by combining our framework
with existing techniques for automatically detecting model
changes and generating (initial versions of) suitable migra-
tions. While our framework and IDL show that translation
layers are feasible in the context of web-based service APIs,
to apply this approach in practice, we need to extend
translation layers to also support delegation and adaptation
of function calls, and to support more features required
by specifications for APIs (e.g., authorization settings or
error handling). Moreover, in addition to delegating the
migration of referenced objects, we aim at further increasing
the level of modularity and reuse by delegating parts of
the migration of a subtype to its supertype, e.g., using a
dedicated super keyword as known from object-oriented
programming. Eventually, we also aim at an empirical eval-
uation of our domain-specific language. Although we are
confident that web developers familiar with JavaScript can
deal with the lightweight extensions provided by N4IDL,
an assessment of whether the concepts it implements are
captured in language constructs would be beneficial.
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where he is doing research as part of the Secure,
Reliable, and Intelligent Systems Lab. Before
that he received his MSc in Computer Science
from ETH Zrich and his BSc in Computer Sci-
ence from the Humboldt University of Berlin. His
current research interests focus around program-
ming languages, machine learning and network-
ing.

Jens von Pilgrim is a professor for program-
ming methodology at the Hamburg University of
Applied Sciences (Germany), and he has more
than 15 years of experience in the business
world. Before re-entering academia, he worked
in a start-up where he lead a team developing a
typed JavaScript language (N4JS) and another
developing a fully featured online shop. He wrote
his PhD thesis at the FernUniversitt in Hagen
(Germany) in the Software Engineering group
about semi-automated model transformations.

Christos Tsigkanos is a researcher at the
Software Engineering Research and Teaching
Group at the University of Bern (Switzerland).
Formerly, he was Lise Meitner Fellow at TU Vi-
enna (Austria) and post-doctoral researcher at
the Distributed Systems Group, as well as at
Politecnico di Milano (Italy), where he received
(2017) his PhD. His research interests lie in
the intersection of distributed systems and soft-
ware engineering, and include dependable self-
adaptive systems and applied formal methods.

Timo Kehrer is a professor at the Institute
of Computer Science of the University of
Bern (Switzerland), chairing the Software En-
gineering Research and Teaching Group. Be-
fore that, Kehrer was an assistant professor at
the Humboldt-Universität zu Berlin (Germany),
heading the Model-Driven Software Engineering
Group from 2017 to 2021. Kehrer worked as
a postdoctoral research fellow in the Depend-
able Evolvable Pervasive Software Engineering
Group at Politecnico di Milano (Italy) from 2015

to 2016, and as a research assistant in the Software Engineering and
Database Systems Group of the University of Siegen (Germany) from
2011 to 2015. He has active research interests in various fields of
model-driven and model-based software and system engineering, with
a particular focus on software and model evolution.


	Introduction
	Background and Motivation
	Motivating Example
	Research Goals

	Version-Aware IDL
	Round-Trip Migration Framework
	Migrations and Migration Calls
	Context Information in Migrations
	Execution of Round-Trip Migrations
	Semantics and Implementation
	Tool Support

	Validation
	Catalog of Migration Scenarios
	Evolution Scenarios
	Detailed Description of a Selected Scenario
	Catalog Results
	Pattern-Oriented Migration Development

	Micro-Benchmarking of Catalog Scenarios
	Case study: E-commerce Web Application
	On Correctness through Automated Testing

	Discussion and Limitations

	Related Work
	Schema Evolution, Versioning, and View Updates
	Web Services Evolution and Specification
	Model Co-Evolution and Synchronization

	Conclusion and Future Work
	References
	Biographies
	Luca Beurer-Kellner
	Jens von Pilgrim
	Christos Tsigkanos
	Timo Kehrer


