
The Journal of Systems & Software 170 (2020) 110742

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Early validation of cyber–physical space systems viamulti-concerns
integration
Nianyu Li a, Christos Tsigkanos b, Zhi Jin a,∗, Zhenjiang Hu a, Carlo Ghezzi c
a Key Laboratory of High Confidence Software Technologies (MoE), Peking University, China
b Distributed Systems Group, TU Wien, Austria
c Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Italy

a r t i c l e i n f o

Article history:
Received 15 October 2019
Received in revised form 18 June 2020
Accepted 13 July 2020
Available online 24 July 2020

a b s t r a c t

Cyber–physical space systems are engineered systems operating within physical space with design
requirements that depend on space, e.g., regarding location or movement behavior. They are built
from and depend upon the seamless integration of computation and physical components. Typical
examples include systems where software-driven agents such as mobile robots explore space and
perform actions to complete particular missions. Design of such a system often depends on multiple
concerns expressed by different stakeholders, capturing different aspects of the system. We propose a
model-driven approach supporting (a) separation of concerns during design, (b) systematic and semi-
automatic integration of separately modeled concerns, and finally (c) early validation via statistical
model checking. We evaluate our approach over two different case studies of cyber–physical space
systems.

© 2020 Published by Elsevier Inc.

1. Introduction

Cyber–physical Space Systems (CPSS) are an important class
of cyber–physical systems (CPS), the term refers to the tight inte-
gration of and coordination between computational and physical
resources. A CPSS is a CPS deployed in a physical space, which
exhibits functionalities that depend on the structure of the space
and on physical locations inherent in it. In this paper, we explic-
itly focus on CPSS inhabited by human and autonomous agents,
which need to accomplish certain missions in space. For example,
robots move goods between different locations in an office space,
or UAVs try to rescue victims in a disaster recovery scenario.

Modeling and validation have been acknowledged as critical
activities in systematic system design (Fahrenberg et al., 2012).
Model construction is especially hard and challenging in the case
of CPSS where many diverse aspects are intertwined (Tsigkanos
et al., 2017). By exploring a variety of cases, we can see that some
of the typical aspects include the spatial domain in which the
system will be deployed, the allowed movements of the system
entities in space, their interaction and cooperation strategies as
well as the mission that the system needs to accomplish (Akkaya
et al., 2016; Tsigkanos et al., 2018). These concerns are obviously
not of the same kind and come from different stakeholders,
requirements, or knowledge sources.

∗ Corresponding author.
E-mail address: zhijin@pku.edu.cn (Z. Jin).

Let us consider a simple capture-the-flag example George et al.
(2018), Dearden et al. (1998), in which a robotic system ac-
commodates two autonomous software-driven agents constantly
moving within an office building with connected rooms and
hallways. The agents may communicate and collaborate to carry
out the system mission — collecting all flags scattered throughout
the rooms. For such a robotic system, the complete model de-
scribing the different facets, such as the layout of the building, the
communication protocols, or the behaviors of the robots, would
inevitably be quite complex. Validation would also be hard. For
example, in order to determine a design solution that will achieve
better system target satisfaction, one might want to explore the
impact of different behavioral deployments, different commu-
nication protocols, or different spatial layouts before the actual
system deployment. When these aspects are all intertwined in
the global system model, it is difficult to explore and compare.

The principle of ‘‘separation of concerns’’ (Dijkstra, 1982) is
highly desirable in such situations, by which different system
models are used to capture distinct concerns. That makes mod-
eling and model-update simpler. Moreover, this principle allows
model reuse that would be helpful for modeling of CPSS. In
general, for CPSS, the space layout and the spatial activity are rel-
atively unchangeable and may be reusable for different missions.
However, the deployment of system entities with specified be-
haviors and the interaction concerns among the system entities,
may be dependent on the particular mission considered. On the
other hand, system analysis and validation ask for the integration
of these separate models so that it can be determined whether

https://doi.org/10.1016/j.jss.2020.110742
0164-1212/© 2020 Published by Elsevier Inc.

https://doi.org/10.1016/j.jss.2020.110742
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110742&domain=pdf
mailto:zhijin@pku.edu.cn
https://doi.org/10.1016/j.jss.2020.110742


2 N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742

or not the overall system mission can be achieved. Whenever
a change or substitution is made on an individual concern, the
integration process needs to be repeated before analysis. Thus,
systematic integration of models is a vital link in system model
validation.

To this end, this paper proposes a divide-and-conquer mod-
eling methodology. That is, separate analyzable models cap-
ture recurrent concerns in CPSS, which are then systematically
and semi-automatically formally integrated yielding automata
equipped with transition guards, invariants and probabilistic fea-
tures. Then, state-of-the-art statistical model checking techniques
(Bulychev et al., 2012; Larsen and Legay, 2014) are used for
validation, prior to system implementation or deployment. Such
validation methods may not offer definitive assurances like for-
mal verification, but can provide valuable insights early in the
design process and can scale to practical systems. This kind of
feedback about potential outcomes of early design choices in
the development process can help the designer to explore the
solution space and make decisions in a cost-effective manner. Our
main contributions are summarized as follows:

• We propose a methodology identifying three key recurrent
concerns representing CPSS facets compatible with existing
formal modeling techniques;

• We propose a semi-automatic method of integrating three
models into an analyzable one capturing all concerns and
a general algorithm of model integration, upon which the
validation process is carried out;

• We evaluate our approach over two different cases of CPSS,
demonstrating its applicability.

The rest of the paper is structured as follows. Section 2 sum-
marizes some related work. Section 3 presents an overview of
our approach. Section 4 presents separate modeling of different
system concerns. Section 5 yields integrated model capturing
conformable behaviors while Section 6 illustrates early require-
ments validation through statistical model checking. Experiments
have been done to evaluate the approach in Section 7. Section 8
concludes the paper.

2. Related work

This paper focuses on the modeling and validation of CPSS in
the early design stages. Consequently, we classify related work
into three categories. First, we discuss key approaches in CPS
system design as multi-agent systems (MAS). Then, we review
related techniques on engineering systems through integrating
multiple concerns. Lastly, we discuss related CPS applications
utilizing statistical reasoning, framing our approach within the
overall software engineering domain.

Researchers have reflected that the metaphors of agents and
the principles of multi-agent systems remain attractive for de-
signing and engineering cyber–physical systems (Mascardi and
Weyns, 2018), given the increasing integration and the inherent
uncertainties CPS face. In this regard, there have been multiple
efforts to design CPS using MAS engineering methods. In Fortino
et al. (2018), the agent-based computing paradigm has been
explored to support IoT systems analysis, design, and imple-
mentation. Based on the agent-based cooperating smart object
methodology and related middleware, effective agent design and
programming models are provided along with efficient tools for
the actual construction of an IoT system in terms of a multia-
gent system. With applications to automated guided vehicles and
transportation systems, an architecture-based design of MAS has
been proposed that puts architecture at the center of the devel-
opment activities by documenting specific concerns such as roles,
organizations, and interaction protocols (Weyns, 2010). In Leitão

et al. (2016), multi-agent systems have also been recognized as
sharing common ground with CPSs and being able to empower
CPSs with a multitude of capabilities, so to effectively enable
emerging CPS challenges. These works have demonstrated that
the multi-agent paradigm has potential advantages in CPS design,
but to the best of our knowledge, they do not touch the point on
how to effectively model and validate CPSs when problem com-
plexity needs to be managed and even complex system models
need to be constantly adjusted and validated during the design
phase.

Some approaches have recognized that the operating environ-
ment needs to be treated explicitly as a first-class abstraction
in MAS which provides the surrounding conditions for agents to
exist and an exploitable design abstraction (Weyns et al., 2007;
Weyns and Michel, 2014; Jin, 2018). The use of organizational
concepts such as e.g., the AGR (Agent-Group-Role) organizational
model has been adopted for describing the structures and the
interactions that take place in MAS. In Ferber et al. (2004), the
AGR model is extended by assuming that agents are situated in
domains, i.e., spaces, which may be physical (i.e. geometrical) or
social. That allows to give a clear distinction between an agent
and its mode, i.e. the way it appears and interacts into a space
with other agents, aiming to show that a multiagent world is
constituted of agents that may perceive and act in spaces and
manifest their existence through their mode. This work explicitly
uses the concept of physical space, but the space is not treated
a first class abstraction and does not include its separate model-
ing. Some researchers propose the concept of intelligent virtual
environments and develop an ontology comprising concepts for
modeling intelligent virtual environments enhanced with con-
cepts for describing agent-based organizational features (Duric
et al., 2019). The agents’ environment has been proposed to be
a first-class abstraction within MASs but it has not been modeled
separately. In contrast, we explicitly model the spatial environ-
ment as a state-transition structure and consider the possible
spatial behavior of active agents as a special concern.

The separation of concerns is a cornerstone principle for com-
plex systems since it can simplify development, maintenance and
reusability (Dijkstra, 1982; Ghezzi et al., 2003). Aiming at han-
dling the ‘‘multiple perspective problem’’ in composite systems
in which there are multiple stakeholders involved, in Finkelstein
et al. (1992), Nuseibeh et al. (1993), viewpoints are used to
partition the system specification, the development method and
the requirements representation. Using viewpoints to encapsu-
late the heterogeneous requirements from different stakeholders
makes the requirements elicitation much easier. Such multiple-
view conceptions have led to the interaction and integration
of different viewpoints contributing to resulting requirements
specifications (Nuseibeh et al., 1994). Multi-view reasoning has
also been adopted in architectures with multiple and poten-
tially conflicting concerns for quality requirements (Demir, 2015).
Apart from requirements, complex software development must
deal with more massive problem domain knowledge. By ana-
lyzing different models of object-oriented software development
to identify the main differences in handling problem domain
knowledge, a two-hemisphere modeling approach (Nikiforova
and Kirikova, 2004) has been put up to accommodate different
models and to automate the process of model transformation.
It also enables knowledge representation in terms of business
process models and concept models. Within the field of cyber–
physical systems specifically, a conceptual model of a CPS has
also been proposed to support different concerns (as views) of
physical, cyber–physical, and computational aspects (Tsigkanos
et al., 2016a). Those can be considered as the separation of dif-
ferent concerns. Our approach is similarly along this line. The
referred concerns are three aspects about the construction of



N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742 3

CPSS specifically, i.e. the physical space, the agent deployment
and interaction, as well as the task requirements.

Similarly in the above mentioned practices of separation of
concerns, building a comprehensive system model benefits from
or relies on model integration of the separate concerns or as-
pects (Akkaya et al., 2016). There are many efforts on this topic.
For example, the synthesis of behavioral models for modeling and
reasoning about system behavior at the architectural level, such
as labeled transition and modal transition systems, from scenario-
based specifications has been extensively studied (Uchitel, 2003;
Sibay et al., 2013). Previous work (Tsigkanos et al., 2017) has
targeted automatically obtaining automata structures for cyber–
physical spaces, which can bootstrap a core aspect of the present
work — spatial behavior of entities from static space descriptions.
Moreover, physical models themselves may be automatically ob-
tained (Visconti et al., 2019). Indeed, our approach is based on
separate modeling of different concerns, systematic composition
of separate models, and validation of the composite model. By
supporting experts to focus on different models and then provid-
ing a way to integrate them in a systematic (and semi-automatic
manner) – instead of requiring a single model to be provided to
encompass all views – we can provide improved design support
for CPSSs.

Regarding validation, notable recent approaches have focused
on applications of statistical model checking in diverse domains
within CPS, expanding the scope that is treatable beyond explicit-
state verification (Larsen and Legay, 2016; Li et al., 2018). In Rui-
jters and Stoelinga (2016), a framework utilizing statistical model
checking for dependability within railway systems is developed.
In addition, rare events problems in cyber–physical applications
have been emphasized in statistical model checking, either by
adding feedback control to efficiently estimate probabilities (Kala-
jdzic et al., 2016) by importance sampling and Cross-Entropy
methods (Clarke and Zuliani, 2011), or by importance splitting
and reformulating rare probabilities (Jégourel et al., 2013). Also
within software engineering, the ActivFORMS (Iftikhar et al.,
2017) framework exploits statistical model checking at runtime
to select configurations that comply with self-adaptation goals
over an internet-of-things network topology. In contrast, our ap-
proach targets early requirements validation through separation
of system design concerns.

3. Approach overview

Design of cyber–physical space systems must take into ac-
count their spatial environment and how system requirements
can be affected by the behavior of various active agents. The
specific spatial environment a system is found in, dominates
agent behavior — it delineates the spatial actions that are possible
within it. Besides actions in space, agents in a cyber–physical
space system also interact. Typically, this interaction may take
the form of communication or coordination, as agents do not
operate in isolation but are part of a composite system. Thus, the
overall system exhibits composite behaviors which may satisfy
or violate its design requirements. Our approach concerns high-
level reasoning during the system requirements phase, where
a way to validate system behaviors before implementation and
deployment is highly desirable to provide the required assurances
for the final system. The main driver of our approach is separation
of concerns — the design principle for separating a design into
distinct sections, such that each section addresses a separate
concern (Dijkstra, 1982).

Fig. 1 shows a bird eye’s view of our approach. The develop-
ment cycle of a cyber–physical space system starts by taking into
account the spatial environment and the possible spatial behavior
of active agents (from left to right in Fig. 1). This is because a CPSS

is usually coupled by multiple problem solvers, i.e., agents with
certain capabilities which operate to achieve some mission. Mis-
sion achievement can be specified by describing certain desirable
states that those agents are required to bring about (Weyns et al.,
2007). Additionally, active agents in the CPSS may communicate
and coordinate with each other in order to collectively achieve
the system mission. Thus, we identify three distinct concerns: (i)
spatial activity, (ii) interaction and the overall (iii) system mission.
Within our approach, those are captured independently by fol-
lowing a well-defined and rigorous modeling method (Section 4).
Models are then semi-automatically integrated leading to coher-
ent behavioral model (Section 5), capturing behaviors of a single
autonomous agent. Then, the system model can be obtained by
considering the collective of interacting agent instances. Analysis
of the system’s mission achievement can then be performed by
validating the system models — in our approach we advocate
requirements validation through statistical model checking. The
analysis results finally acquired can guide implementation and
deployment of the actual system modeled.
Running Example. As a motivating example showcasing our
approach, consider a capture the flag mission (George et al., 2018)
often used as a benchmark for mission planning (Dearden et al.,
1998) in artificial intelligence or robotics domains. In such a
mission, flags as static physical objects are scattered throughout
a building comprising connected rooms and hallways. A team of
two active robots are dispatched to find these flags. The objective
of this team is to achieve collection of all the flags. However,
the building is augmented with security cameras that monitor
certain areas; a camera scans a designated area, surveying for
possible intruders. The agents searching for the flags do not know
beforehand the location of surveillance cameras. Detection of an
agent twice by the camera results in the capture of the agent
and its termination. Agents may attempt to communicate the
position of a security camera an agent has located, to the other. If
communication is successful, the other agents avoid entering the
corresponding location.

For the purposes of this motivation example, we are not con-
cerned with planning but with validation.1 A system goal con-
cerns the composite CPSS that the active agents and cameras
induce, and entails that all three flags must be collected within 10
time units while no more than one robot agent must be terminated.
A time unit is defined as the execution of one spatial movement
by a robot, such as changing its location to another room.

4. Modeling concerns in CPSS

In the following, we describe a systematic way to model
the three major concerns in CPSS. We begin by presenting our
formalism of choice, which aims at capturing in a precise man-
ner models of these concerns sourced from appropriate domain
models. Thereupon, we show how spatial activity and interaction
as well as the system missions can be modeled.

4.1. Modeling formalism

Stochastic Timed Automata (STA Rodriguez-Navas and Proenza,
2013) are one of the prominent classical formalisms for de-
scribing behaviors of real-time systems (Baier et al., 2008) such
as ones consisting of cyber–physical components and stochastic
features (Beauquier, 2003). Our choice of STA is motivated by
the fact that it is generic enough to encompass various domain
models describing spatial behavior, while enjoying precise inte-
gration semantics necessary for requirements reasoning. More-
over, uncertainty is common in CPSS and agents’ behavior is often

1 Behavior of agents adhering to a strategy can be additionally encoded.



4 N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742

Fig. 1. System modeling, model integration and validation for CPSS: approach overview.

probabilistic and time-sensitive. We begin by describing timed
automata briefly, then we stepwise enrich the model including
stochastic aspects. The interested reader can refer to foundational
works (Alur and Dill, 1994; Rodriguez-Navas and Proenza, 2013;
Baier et al., 2008; Beauquier, 2003) for complete definitions and
precise semantics.

A timed automaton (TA Alur and Dill, 1994) is a tuple
TA = (Q, q0, X, G, T, A, Z).

• Q is a finite set of states;
• q0 ∈ Q is an initial state;
• X is a finite set of real-valued variables called clocks;
• T is a set of transitions;
• G, a set of guards, control the triggering of transitions from

state to state during an execution;
• A is the set of actions attached to transitions;
• Z are the invariants assigned to individual states and ex-

pressing further constraints on delay times in clocks.

A guard is an expression with no side-effects which evaluates
to a boolean value and is attached to every transition; an expres-
sion value of truewill enable the transition for choice, while it will
disable it if false. Actions set A is partitioned into input (I), output
(O) or internal (Γ ) actions. Finally, a transition T of a TA can be
specified as a tuple t = (q, a, g, q′), which specifies a transition
from state q to q′ with actions a (either input, output, or internal
action) and guards g, where q, q′

∈ Q; a ⊆ I ∪ O∪ Γ and g ⊆ G.
To capture stochastic behaviors in a timed automaton — yield-

ing a stochastic timed automaton (STA Rodriguez-Navas and
Proenza, 2013), two aspects are introduced: states of the TA are
associated with a probability density function (µ) and sets of
transitions (from each state) are associated with probabilistic
choices. Time delay over a state is not fixed but follows the dis-
tribution (e.g., exponential distributions) according to µ. Observe
that a state might have multiple successor states, each having
guards. Informally, guard semantics is as follows. First, guard
expressions are evaluated, enabling or disabling sets of transitions
exiting the state. Among the enabled sets of transitions, a non-
deterministic choice selects a set of transitions. From that set of
transitions, one is chosen depending on the defined probability
distribution over the successor states (Norman et al., 2013).
Specifically, if Tqg is the non-empty set of transitions starting
from q with the same guard g, then for all q ∈ Q, it holds that∑

t∈Tqg ȷ(q, t) = 1. Transitions of an STA capture the following
behavior. When a state is entered, a wait time is chosen; after the
wait time has passed, a transition is enacted according to the de-
fined transition probability (Rodriguez-Navas and Proenza, 2013).
The STA we consider are supported by uppaal − smc (Bulychev
et al., 2012), while further effective tool support widely exists
for analyses based on such STA (David et al., 2011; Kwiatkowska
et al., 2011).

4.2. Modeling spatial activity

The rationale of conceiving separately a spatial activity model
in our approach is that spatial behavior of agents within an
environment can be derived from domain information. Domain
information can encode how the space is structured in a topolog-
ical manner as well as how active agents change their location
within this topological structure — essentially, agents change
their discrete location within the spatial environment. This is
an adequately general model that can encompass various others.
Such a spatial activity model typically has a form of a state-
transition structure, where states represent possible locations
that autonomous agents may be found in, and transitions repre-
sent how they may move from a location to another. The model
can either be constructed manually or automatically derived by
sourcing appropriate domain representations. Such domain de-
scriptions can be modeled using e.g., process calculi yielding
state-transition structures (Foster et al., 2006; Tsigkanos et al.,
2017) automatically. Another way of obtaining such a model is
based on domain descriptions representing spatial space (Visconti
et al., 2019), such as Building Information Models (BIM Eastman
et al., 2011) or CityGML (Kolbe et al., 2005), upon which dy-
namics of autonomous agents are encoded via transformation
rules (Tsigkanos et al., 2016a). Furthermore, domain models of
geolocation trajectories of e.g., internet-of-things devices can be
used (Tsigkanos et al., 2019).

Recall the motivation example; the spatial activity model of
robots is represented by an STA which can be derived with the
aforementioned techniques, such as the structure of the build-
ing (Tsigkanos et al., 2016b). A state records the position of an
agent in some location through a proposition. For example, a
robot agent might be located in room A, represented with the
state labeled RA in the STA of Fig. 2(a). Transitions reflect possible
change of location to another. For example, if an agent is in a
hallway named HA, and adjacent to it there is a room named RA
and another room named RC with connecting doors, the STA has
a transition from a state labeled HA to one labeled RA and to one
labeled RC.

The model obtained can be further enriched with additional
domain information. If the time spent in a location is known,
this can be specified and incorporated to the model accordingly.
This may be sourced e.g., from knowledge about the geometrical
size of the rooms in a building, which require the robot to stay
a longer time searching for the flag. Instead of explicitly defining
clock variables in the STA thus encoding directly time units in-
variant in each state, stochastic behavior of the agent is specified
— we assume that time units in every state of the STA are
obtained from some probability distribution with rates supplied
by the system designer. For our motivating example and the robot



N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742 5

Fig. 2. Activity models for the capture-the-flag example; a robot may move between certain physical locations (a), and independently interact with other robots (b)
through a notify() operation.

activity of Fig. 2(a), the robot agent may stay in Room A RA for
an average time of 1 time unit, e.g. in an exponential Poisson
distribution, in the absence of invariant Z to the states (David
et al., 2015).

4.3. Modeling success and failure

In general, system missions may refer to cross-cutting system
concerns, and may refer to either quantitative or qualitative ob-
jectives of a set of agents. In our motivating example, recall that
the system goal states that the ‘‘all four flags must be collected
within 10 time units while no more than one robot agent must
be terminated’’. A set of elementary predicates about one or
multiple agents in the cyber–physical space system, which are
composed in a logical manner that introduces quantitative or
logic constraints about single agents, could then be manually
derived. For instance, the fact that an agent is in a specific room
or is in a condition of termination due to successful monitoring
by the surveillance camera are predicates for a single robot agent.
Each predicate may be either true or false for an agent.

Thus, states in an automaton expressing behavior can rep-
resent success or failure of predicates. In our setting, to enable
reasoning such predicates are encoded as success–failure states
in an STA capturing each agent; if an STA is found in such a
state, the predicate is considered satisfied (or violated) for that
particular agent modeled by the STA. This designates reachability
properties as the fundamental requirements building block, as
success–failure states reflect that some goal or failure of an agent
has been reached. In our capture-the-flag example, a ‘‘termi-
nated’’ failure state is introduced, which reflects the robot agent’s
status as terminated. Such a state is absorbing — the STA mod-
eling the agent should not be able to continue operating. These
success–failure states along with auxiliary primitives and system
variables become available for the overall system requirements
specification (illustrated later in Section 6).

4.4. Modeling interaction

In a CPSS, agents do not operate in isolation; they also in-
teract. Through interaction, they may also coordinate behaviors.
Automata are frequently used to model interaction, such as one
occurring between components in a system (Brim et al., 2006),
between humans and robots (Anon, 2012), and protocols among
agents in multi-agent systems (Anon, 2000). Thus, STAs – being
quite expressive, general automata – can be naturally used to
express agent interaction and coordination as well. Communica-
tion between agents operating in a CPSS for instance, is a typical
form of interaction, and a model of a communication protocol
describes how interaction between agent instances takes place.
The interaction concern between agents may differ in different
scenarios; faithful to the separation of concerns principle, we
describe the interaction model via a separate STA. Typically, the
STA describing the interaction model may be specified indepen-
dently by a domain expert; e.g., an expert in communication

protocols. The interaction between different classes of agents is
also allowed.

To ensure that various aspects of our approach are compat-
ible and conformable, we assume that the interaction model
is sourced from some domain model and it is an STA IT =

(Q, q1, qn, X,G, A, T, Z) with both an initial and a final state, where
the initial state q1 signifies the start of the interaction logic
and the final (exit) state qn signifies the end of the interac-
tion logic. Given transfer of control to the entry state, progres-
sion to the exit state has to always eventually occur — in other
words, the interaction or communication protocol must be always
terminating.

Fig. 2(b) illustrates the rudimentary case of communication
between robot agents in the example capture-the-flag mission.
For this small example, interaction is simple and consists of a
single one-way operation (notify). For our robot scenario, time-
units spent in each state of interaction automata are considered
negligible for simplicity. A set of shared variables common to the
various agents can be used in conjunction with transition guards
or actions by the system designer to implement interaction logic.
Note that in real systems interaction and communication mod-
els can be very complex (such cases will be illustrated later in
Section 7).

5. Model integration of agent behavior

While the aforementioned models capture separate concerns,
a unified model capturing spatial and interaction activities and
success–failure states of autonomous agents is needed. We illus-
trate in this section how such models can be integrated, enabling
requirements reasoning on the overall CPSS induced by its agents.

The key intuition behind incorporating success–failure states
is that an agent may be at any point found in a situation that
fulfills an elementary predicate; in other words, the STA capturing
the agent’s behavior may enter a success–failure state which en-
codes such a predicate. Similarly to incorporating success–failure
states, the composition of interaction with the spatial activity is
performed for every of the spatial activity STA’s states; that is to
say, possible interaction could occur from any spatial location that
an agent may be found in. Triggering interaction may be of course
context-dependent, something which can be specified explicitly
by the designer by encoding appropriate guards. Such a guard
would predicate on conditions that would enable or disable in-
teraction based on some context that is true when the agent is in
the relevant spatial STA state. We consider by default that guards
controlling transitions to interaction STA are checked (and a
transition to interaction STA executed) before transitions to other
spatial STA states are considered by the integrated automaton.

To precisely define the composite agent behavior, let R =

(sf 1, sf 2, . . . , sfn) be the set of success–failure states of an agent,
P = (QP , q0P , XP ,GP , AP , TP , ZP ) its spatial activity automaton, and
I = (QI , q1I , qnI , XI ,GI , AI , TI , ZI ) be an interaction STA. We as-
sume that QP∩R = ∅. The automaton C = (QC , q0C , XC ,GC , AC , TC ,
ZC ) describing the integrated agent behavior and consisting of all
three concerns has the following form:



6 N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742

• QC = QP
⋃

R
⋃

QI where QP , R, QI are disjoint;
• q0C = q0P ;
• XC = XP

⋃
XI ;

• GC = GP
⋃

GI⋃
{check_sfi == true,
check_sfi == false | sfi ∈ R}⋃

{check_interaction == true,
check_interaction == false}

/* two new added guards for each predicate state and two
for interaction*/;

• AC = AP
⋃

AI⋃
{action_spatialactivity}⋃
{action_sfi | sfi ∈ R}⋃
{action_q1I , action_qnI}

/*added actions encoding any additional logic for spatial ac-
tivity, predicate states, and before entering and after exiting
the interaction*/;

• TC =

{(q, a, g, q′) |

q ∈ QP , q′
∈ R,

a = {action_q′
},

g = {check_q′
== true}}⋃

{(q, a, g, q′) |

q ∈ QP , q′
= q1I ,

a = {action_q1I},

g = {check_interaction == true}⋃
{check_sfi == false | sfi ∈ R}}⋃

{(q, a, g, q′) |

q = qnI , q′
∈ QP ,

a = {action_qnI},

g = {}}⋃
{(q, a′, g ′, q′) |

(q, a, g, q′) ∈ TP ,
a′

= a
⋃

{action_spatialactivity},
g ′

= g⋃
{check_sfi == false | sfi ∈ R}⋃
{check_interaction == false}}⋃

TI .
• ZC = ZP ∪ ZI .

Transitions are added from every state of P , accounting for
each success–failure state, interaction start and interaction end
yielding control back to P . This is to ensure that the agent might
potentially reach its absorbing state or interact from any spatial
location. Transition guards define and evaluate a condition that
may lead (or not) to certain states. Conditions check_sfi() ==

true are attached to the transition from the spatial STA’s
states to each sfi in success–failure states, check_sfi()==false
and check_interaction() == true between the spatial STA’s
states to interaction entry states, and check_sfi() == false
and check_interaction() == false between spatial activity
states guarantee the high-level control flow of the integrated STA.
These transition guards ensure that high-level control flow is
maintained: (i) success or failure is always checked first for the
agent, (ii) interaction is subsequently attempted and finally (iii)
spatial movement occurs, while (iv) real-time does not pass when
transitioning between automata that capture different concerns.

Function prototypes corresponding to application-specific
logic are further attached automatically to relevant transitions
as internal automata events, and are available for implemen-
tation based on the overall system application. For example,
action_sfi, action_q1I, action_qnI and
action_spatialactivity are added — their implementation
is left to the system designer, who can utilize domain knowledge
to implement concerns that e.g., span different (classes of) agents.

Fig. 3. Fragment of the integrated robot STA.

In our approach, implementation of function prototypes in
transition guards and actions is delegated to the system de-
signer, who can utilize domain knowledge to encode predicates
inherent in the system missions. This renders our approach semi-
automatic. By delegating this encoding to the designer, a variety
of domain-specific behaviors can be modeled, utilizing available
primitives such as spatial locations and current agent positions.

Listing 1: Partial Implementation required for the motivating
example.

bool check_terminated ( ) {
i f ( detected_time==) return true ;
else return f a l s e ;

}
void action_terminated ( ) {

robot_pos = - 1;
}
void ac t i on_ spa t i a l a c t i v i t y ( ) {

i f ( camera [ robot_pos ]== true )
detected_time ++;

}

Back to our motivating example, a fragment of the agent
model generated is illustrated in Fig. 3. In the middle part, the
spatial activity captures position of an agent in locations RA or
HA. From location HA, the STA may enter either its failure state,
or the interaction STA (lower part), where the robot may notify
the other one of its local information (camera or not). For a robot
agent, implementation of guards and actions is shown in Listing
1. The function check_terminated() encodes the case where
a robot has been detected twice. If this is the case, function
action_terminated() encodes that the robot position informa-
tion is erased, triggered as the agent is terminated. When the
robot moves to a new location, the time of detection will be set
to one if there is a camera inside the room, as shown in func-
tion action_spatialactivity(). Note that function prototypes
action_spatialactivity() may encode other arbitrary logic
for the agent, to be executed when changing spatial locations.
The complete guard and function prototypes implementation is
omitted for clarity in Fig. 3; the complete specification of the mo-
tivating example can be found in accompanying material (Anon,
2019).

6. System validation

In this section, we discuss how requirements of the CPSS are
specified, and subsequently give an overview of how statisti-
cal analysis of their satisfaction upon the system is performed.
Given a CPSS mission, the system designer specifies (i) require-
ments of interest as logical formal properties and the (ii) de-
ployment setup, upon which analysis will take place. The latter



N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742 7

entails parametrization of the CPSS depending on deployment
of the system under investigation — the deployment setup sub-
mitted for analysis specifies the number of autonomous agents
and their initial states. The deployment configuration is subse-
quently loaded in the off-the-shelf statistical model checking tool
uppaal − smc (David et al., 2015), and results are obtained.

6.1. Property specification

Recall our capture-the-flag example; the system mission con-
cerns the whole system that the robot agents induce. Firstly,
it predicates about certain robot(s) having some property, thus
reasoning about multiple agents is required. Secondly, it predi-
cates about their overall behavior in the space (i.e. the number of
flags they collect). Finally, it predicates about the passage of time
within the mission.

To investigate if the CPSS satisfies a requirement, it must be
expressed in a manner that analysis can be enabled. To this end,
we adopt Metric Temporal Logic (Koymans, 1990), – a timed ex-
tension of Linear Temporal Logic (Clarke et al., 1999) – expressing
properties over execution runs of the system, defined as:

φ ::= ap | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ⃝φ | φ1 ∪x≤d φ2.

In the grammar, ap is a proposition, d is a non-negative integer
and x is a clock. The logical operators are interpreted as usual, and
⃝ is a next state operator. φ1 ∪x≤d φ2 is satisfied by a run if φ1
is satisfied on the run until φ2 is satisfied, and this will happen
before the value of the clock x exceeds d. It provides additional
reasoning upon clock variables and clock constraints that specify
timing behaviors. Given fundamental operators ⃝ (‘‘next’’) and U
(‘‘until’’), we can derive additional ones such as ⋄φ = true U φ
(‘‘eventually’’) and □φ = ¬ ⋄ ¬φ (‘‘always’’). Thereupon, we
define P(φ) to be the probability that a random run of the system
satisfies φ.

CPSS property specification using the syntax described occurs
by utilizing four types of available propositions:

1. Spatial locations within the space where an agent may
be found during execution. For example, the proposition
[RobotA.RC] in the capture-the-flag scenario reflects the
fact that the robot A is in the room C .

2. Agent success/failure of agents. For instance, the propo-
sition RobotA.terminated (resp. RobotA.successful) expresses
the fact that during an execution, robot A is terminated
(resp. successful) – its behavior reached the relevant ab-
sorbing state.

3. Auxiliary propositions that regard (i) counts of agents and
(ii) time that they spend in specific spatial locations. For
example, the (boolean) proposition [RobotSFNum <= 1]
encodes the fact that the total number of robots that jump
into their respective success–failure state is less than one,
and [SystemTime <= 10] specifies that the time units spent
in the system are no more than ten.

4. Application-specific global variables. The system designer
is allowed to define custom global variables within func-
tion implementation, where those variables are exposed as
propositions. For instance, a global variable [nFlag] main-
tains the count of flags collected by the robots; boolean
propositions are derived from them such as [nFlag == 3],
representing the fact that the count of collected flags is 3.

Given the above types of propositions available, the capture-
the-flag mission requirement can be expressed in the following
formula, which states that eventually, in the system’s execution
after a maximum of 10 time units, the number of flags collected is
three, and the count of robots reaching success–failure is at most
one:

⋄[SystemTime<=10][numFlag == 3] ∧ [robotSFNum <= 1].

6.2. Early validation with statistical model checking

Statistical model checking (SMC) (Younes, 2005; Legay et al.,
2010) is a method for calculating the likelihood of the occurrence
of certain events during execution of a system. This is performed
through simulation runs, reaching some confidence level. Statis-
tical techniques for analysis have been found to be applicable for
large and complex systems that cannot be verified with classical
model checking (David et al., 2015).

To apply statistical model checking techniques, what is essen-
tially required is (i) a formal model describing a system able to
generate finite sets of executions serving the purpose of observa-
tions, (ii) a monitoring procedure to decide whether an execution
satisfies the property under consideration and (iii) a statistical
algorithm yielding overall results for the system. The system
model is used to generate execution traces upon which statistical
methods produce statistical evidence about the system’s satisfac-
tion or violation of a property specification. In essence, for all
available behaviors of agents in the systems at every moment,
each simulation run picks up one path stochastically and returns
‘‘true’’ or ‘‘false’’, indicating whether or not the model of a system
satisfies the system property for that run. Subsequently, the de-
signer obtains results useful to early requirements validation of
the overall system (Bohlender et al., 2014).

Recall that the integrated behavior model outlined in the
previous sections represents one class of active agents — in a
CPSS, there would be various agent models concerning differ-
ent classes. We instantiate as many instances of these classes
depending on the CPSS and deployment configuration specified
by the designer. The result is a network of STAs. Initial states
and the number of agent instances depend on the deployment
evaluated by the system designer. The system model, along with
a specified deployment configuration and property are subse-
quently loaded in the off-the-shelf statistical model checking tool
uppaal − smc (Bulychev et al., 2012) and analysis of the STA is
invoked. The result is the degree of satisfaction or violation of
properties with some obtained confidence level. Generally speak-
ing, confidence represents the intervals that contain the true
value of result from an infinite number of independent statistical
samples.

We succinctly indicate results of analyses of the capture-the-
flag scenario of Section 3. For this scenario, two instances of the
robot agent model are deployed with initial states in room A and
C respectively. The configuration (including the initial position
of robots, flags and cameras) is as shown in Fig. 1. The 95%
confidence interval, containing the range of potential values of
achieving the system goal, is [0.553, 0.652] within an average of
8 time units passing.

7. Evaluation

To evaluate our approach and assess its applicability for val-
idation, we consider two cases of spatially-dependent compo-
nent systems. The systems are different in domain, complex-
ity, size and analyses required. However, they both are within
settings where different classes of active agents operate in a
space-dependent environment. The first models a swarm robotics
system obtained from literature (Kernbach et al., 2009), while the
second concerns a complex case of emergency response with au-
tonomous Unmanned Aerial Vehicles (UAVs). The swarm robotics
case intends to reproduce the original system and illustrate its
stability and scaling attributes. The emergency response case
tackles typical design questions within such a scenario, where
high complexity is prevalent both in the system, agent interaction
and spatial domain.

To concretely support evaluation, we realized a proof-of-
concept implementation, which is available as an open source



8 N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742

tool (Anon, 2019) reflecting the integration and specification
procedures of Section 5. Models produced representing various
classes of agents are compatible to uppaal − smc (Bulychev
et al., 2012) with which statistical validation is performed.

7.1. Honeybee swarm micro-robotics

For this evaluation case, we closely model a micro-robotics
system (Kernbach et al., 2009) from the robotics literature. Our
objective is to perform a study of authors’ findings through our
model-based approach. The robotic design in question concerns
a collective of resource-constrained micro-robots which move
autonomously within a plane, each equipped with a sensor. The
overall goal of the collective is to assemble at the location with
the highest sensing value. Such a swarm behavior is based on
the aggregation behavior observed in honeybees, which aggregate
at the warmest spot on the comb. Specifically, the bio-inspired
micro-robots operate as follows:

• Robots move randomly within the spatial plane;
• Robots detect collisions with others. If they collide, they

stop.
• A sensing measurement is taken only when robots stop after

a collision. The higher the measurement, the longer they
remain in the same location.

We note that the system has particular swarm characteristics;
there is no communication involved, robots have no memory,
and the swarm algorithm works also with poor sensor reliability.
Moreover, there is no global knowledge needed for the swarm
system’s operation. In essence, a single robot has no chance to
find the optimum, since it does not have memory and does not
collide. As the number of robots increases, collisions increase as
well, so the emergent collective behavior is successful in finding
the optimum. The main hypothesis we seek to investigate is the
following Kernbach et al. (2009):

‘‘High swarm densities lead to more collisions, higher frequen-
cies of sensing and thus faster convergence’’.

According to the principles mentioned in Zomaya (2006), the
collective behaviors of the micro-robot swarm would show the
following properties: (i) stability, where the swarm should find
a stable final solution whatever the initial distribution, and (ii)
scalability, where the algorithm should work better with greater
numbers of robots. We consider temperature as the sensor mea-
surement and reproduce the robotic setup described in Kernbach
et al. (2009). In the following, we briefly describe the robot
modeling activities. Specifications and models are available in the
online appendix Anon (2019).

Agents’ Physical Activity. To generate the model of the micro-
robot spatial activity, the area is divided into a grid. Each cell
represents one state where the robot is located at a time, and
neighboring cells denote the state-transition structures repre-
senting spatial moves in four possible directions (north, south,
west, and east). The temperature for each grid and the possible
resting time in a specific temperature for a robot are specified in
advance as domain knowledge. The initial swarm distribution is
chosen randomly to experimentally evaluate stability.

Agents’ Success and Failure. We identify a success state for a
robot denoting the successful finding of the ‘‘Optimal Cluster’’
within the spatial plane, where the temperature is the highest.

Agents’ Interaction and Coordination. In the scenario studied
(Kernbach et al., 2009), robots identify collisions with passive
objects and other robots by emitting short-range light signals. We
simplify this behavior by ignoring passive objects and limiting in-
teraction range within the grid. A micro-robot model integrating

Fig. 4. Scalability over increasing number of micro-robots.

the aforementioned concerns is constructed with our framework;
the designer may further specify number of micro-robot instances
as well as initial states for each. For this experiment setup, 20
robot agents are initially deployed in a temperature field dis-
cretized into 10 × 10 grids. The temperature in the arena ranges
from 22◦ to 36◦ (i.e., optimal) with the resting time in each
grid from 1 to 6 time units. We study the variation in analysis
results introduced by (1) the initial distribution of micro-robots
to investigate stability, and (2) the number of robots to verify
the property of scalability. The property specification we consider
is ⋄[SystemTime<=1000]OptimalClusterNum >= threshold. Here, we
define a solution of cluster (i.e., threshold) as more than two-
thirds of the robots gathering when total the number is no more
than 15, and as 15 in other cases.

Stability of swarm behavior. We consider several different initial
distributions for 20 robots. From the experiment results, we
observe that a swarm size of 20 is enough to form the optimal
cluster no matter the initial configuration, though with differ-
ent timings. Therefore, we investigate the time units needed to
form the optimal cluster. Firstly, three groups of initial randomly
scattered robot distributions are selected. The time to form the
optimal cluster is around 1100 to 1200 time units, with probabil-
ity beyond 90%. Subsequently, we investigate the case where all
robots are deployed in one grid, a non-optimal cluster at very first
beginning. The time for the cluster changing from 30◦ to 36◦ is
around 1350 while the worst case from 22◦ takes more than 1600
time units. Overall, the swarm can find a stable optimal cluster
independent on the initial distributions in the temperature field.

Scalability of swarm behavior. For this set of experiments, we
increase the number of robots in a stepwise manner and study
its effect on optimum cluster finding, with respect to our hy-
pothesis. We consider an experiment constraint time of 1000
time units and the same experiment setup. One can observe
in experiment results of Fig. 4, that an individual robot cannot
find the optimal location. Similarly, a group of three is very
unlikely (probability less than 10%) to succeed. Increasing the
size of the swarm improves the probability of gathering into an
optimal cluster, and becomes almost certain with more than 27
robots. We further note that the waiting time related to the local
temperature in cluster, influences scalability — if waiting time is
shorter, probabilities generally increase.



N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742 9

7.2. Emergency response in a smart city

We consider a disaster scenario in an urban environment,
where communication infrastructure is disabled and parts of the
city may be unsafe; search and rescue must be performed for
stranded victims within the city. To this end, autonomous UAVs
are dispatched to locate and rescue victims (Tsigkanos et al.,
2017). The city is naturally physically comprised of buildings,
roads, squares etc, which can be considered as discrete locations
where active victims (or UAVs) at any time may reside. UAVs
and victims are the two main classes of autonomous agents
we consider. UAVs move between adjacent locations in the city
searching for victims, while it is known beforehand that victims
themselves may move between specific locations due to local
conditions (e.g., an estimation of where victims may be stranded).
If victims are found in the same location with a UAV at the same
time, they are said to be saved, as the UAV successfully detects a
victim and alerts rescue personnel of its location.

As disaster scenarios are highly dynamic and uncertain, in-
dividual UAVs performing the search and rescue operation may
crash due to the disaster-struck volatile environment. For ex-
ample, arbitrary obstacles, falling debris or building collapses
may introduce hazards for the UAVs operating in the city in a
dynamic and unknown way. This can be mitigated by commu-
nication infrastructure on board the UAVs, which attempts to
communicate hazardous local situations encountered by a UAV
to neighboring ones. If communication is successful, neighboring
UAVs avoid entering the corresponding location for a defined
period of time. Besides dynamic obstacles, search and rescue is
naturally an energy-consuming task for UAVs, which have to
periodically recharge their batteries at charging stations during
the mission. However, battery consumption is not entirely pre-
dictable – strong local wind conditions for instance, lead to UAV’s
rotors consuming variable power. In our scenario, if a UAV cannot
manage to get to a charging station before its battery runs out, it
is considered as out of battery and is disabled.

The search and rescue scenario described, implies significant
analysis challenges. Firstly, the scenario takes place in a large
physical space, where autonomous agents interact with space-
bound facilities, such as charging stations. Secondly, the dynamic
environment of a disaster-striken city implies that uncertainty is
a key component — locations of victims may be partially known
and behavior of the active agents is governed by probability
distributions. Thirdly, from a system designer perspective, the
deployment setup is critical. Choosing where to place the active
UAVs (or charging stations) in the large spatial space for instance,
will greatly affect their effectiveness. Finally, different coordina-
tion or communication mechanisms for UAVs might affect the
mission achievement and must be evaluated. The overall system
goal concerns the entire CPSS that stranded victims, UAVs, charg-
ing stations and their interaction protocol induce, and entails
rescuing victims. Specifically, we consider a complex goal where:

‘‘The number of UAVs crashing or running out of battery
should be less than one in the case of less than half of the
victims being rescued’’.

System design questions in such an emergency response sce-
nario typically seek to investigate the effect of different deploy-
ments given a particular city, initial conditions and system goal.
Specifically, design questions in such a scenario typically include:

• How many UAVs should be deployed to adequately satisfy
the system goal?

• How many charging stations should be deployed to mitigate
UAV battery shortages?

• What is the effect of choosing different initial positions for
deploying UAVs?

• What is the effect of choosing different interaction protocols
to mitigate UAV crashes?

• What is the effect of excluding some parts of the city, thus
reducing the search effort for UAVs?

7.2.1. Modeling design concerns within the smart city space
Agents’ Spatial Activity. Recall that there are two classes of

autonomous agents — victim and UAV. To generate the model
of their spatial activity, a topological model of a city is extracted
from a CityGML representation, a widely used XML-based stan-
dard for the description of city models. While out of scope of
the present paper, state-transition structures representing spa-
tial behavior of UAVs and victims are automatically derived and
transformed into STA (Tsigkanos et al., 2017, 2016a). The process
takes as input the movements that UAVs and victims can make
within the city, and yields all possible changes in location for
each agent given a particular city. Models used are available
in an online appendix (Anon, 2019). Initial positions (and thus
initial states in the respective STAs) of victims can be chosen
probabilistically by allowing a distribution over some defined set
of initial states. For our disaster scenario, this can be useful if
e.g., exact initial positions of victims are not known, but domain
knowledge can estimate a part of the city where victims may be
located. In contrast, for UAVs, initial positions are given as part of
some deployment strategy.

Agents’ Success and Failure. From the system goal, a success
state and two failure states are derived. For the victim modeled, a
‘‘Saved’’ state reflects the success of the safe elementary predicate
for a single victim entity; if that state is entered by the victim STA,
the victim is considered safe. For the UAV modeled, a ‘‘Crashed’’
state reflects the UAV’s status as crashed and a ‘‘OutofBattery’’
state reflects the UAV’s status as out of battery.

Agents’ Interaction and Coordination. The mode of communi-
cation is assumed to be sourced from communication experts
providing a model of the communication protocol as well as its
operationalization onboard the UAVs. For our evaluation purposes
and following consultations with UAV experts, we adopt models
of Bluetooth and IEEE 802.15.4-based ZigBee (Stanislav Safaric,
2007), both commonly used to create networks with low-power
radios in industrial scenarios. Bluetooth enables low-power short-
distance communication, while a ZigBee-based setup can provide
communication within larger distances of 100 to 500 m, de-
pending on a power profile and environmental characteristics;
communication can reach more distant UAVs through the forma-
tion of a mesh network. Following consultations with experts, we
utilize two simplified interaction STAs of the Bluetooth and Zig-
Bee protocols, which are available in our online complementary
material (Anon, 2019).

After obtaining the above STA, an integrated model repre-
senting the agent class is exported in XML format as compatible
to uppaal − smc. In this tool, such models are subsequently
imported and the designer specifies the class instantiation based
on the scenario at hand — for our scenario, this entails the number
of UAVs and victims as well as their initial positions. Remaining
code implementing function logic is written by the designer and
requirements are specified in uppaal − smc over the primitives
exposed (as per Section 6), and statistical validation is invoked.

7.2.2. Experiment setup and results
For our experiment setup, victims are initially positioned

based on a random distribution in the city. We discuss five
scenarios where keeping certain variables fixed, we study the
variation in analysis results introduced by another variable: (i)
the number of UAVs, (ii) the number of charging stations, (iii)



10 N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742

Fig. 5. Goal satisfaction within the first two design questions.

the relative initial positions of UAVs, (iv) the choice of protocols
for UAVs as well as (v) excluding certain areas in the city. For
our experiments, we consider a city comprising of 100 Build-
ings (and according roads, crossroads etc.), where several UAVs
attempt to locate 500 Victims. The system goal corresponds to
the property ⋄CrashNum <= 1 ∧ OutofBatteryNum <= 1 ∧

SavedVictimNum >= 250.

Increasing number of UAVs and charging stations. For this set of
experiments, we stepwisely increase the number of UAVs and
charging stations and study their effect on the system goal. In
order to eliminate the influence of UAV initial positions and
the choice of communication protocols, we keep UAVs deployed
at the same starting point, while communication occurs over
Bluetooth. The typical design question here is that given certain
time constraints and a minimum requirement satisfaction desired
(i.e., some specified probability threshold), what is the minimal
number of UAVs or charging stations that should be deployed
in the city to make the probability of satisfying the system goal
exceed this threshold. Fig. 5 shows different configurations of
UAVs and charging stations, allowing the designer to choose
the optimal; observe how naturally, the probability of successful
goal attainment increases by the number of UAVs and charging
stations deployed with 95% confidence. The marginal goal satis-
faction gains decrease with additional UAVs, as all are deployed
from a single starting point and cannot effectively locate scattered
victims.

Decreasing UAV–victim distances. For this set of experiments, we
control the random assignment of initial positions of UAVs in
order to be in certain bounds with respect to distances of UAVs–
Victims. Distance is denoted by hops between possible victim
positions and initial UAV positions. We keep the UAV–Victim
distance distribution within certain bounds and study its effect
on the satisfaction of the system requirement. We deploy ran-
domly 8 charging stations in locations which are kept constant
throughout experiments and 8 UAVs utilizing Bluetooth for com-
munication. Actual positions of UAVs and Victims are chosen
randomly inside the city, but they adhere to specific UAV–Victim
distances. Results are displayed in a probability diagram in Fig. 6
with respect to various distance choices. The cumulative prob-
ability (lines in Fig. 6) refers to the probability that time-delay
units is less than or equal to a value on the X-axis (i.e., time
units). A typical example of this is that the probability can reach
around 0.5 representing estimated requirement satisfaction in
this configuration with 95% confidence within a distance of 2. Our
result is consistent with the hypothesis based on the requirement
— intuitively, if UAVs are deployed closer to where victims may
be located, the requirement is more likely be satisfied and within
fewer time units.

Effect of communication protocol. In this set of experiments, we
study the effects of the adoption of Bluetooth and ZigBee for
UAV communication. For each experiment, we deploy randomly
6 charging stations and stepwisely increase the number of UAVs
from 6 to 8 to compare the degree of satisfaction of goals over
the two protocols respectively. Recall that ZigBee is expected to
outperform Bluetooth. In Fig. 7, the quantification of this effect
is illustrated, and the ZigBee advantage is more evident as the
number of UAVs increases.

Change of the spatial concern. In this set of experiments, we
randomly deploy 8 constant charging stations and 8 UAVs from
the same starting point to study the impact of the limiting the
size of the spatial activity model. As the number of buildings in
the disaster area decreases, indicating zones that the UAVs do not
search, goal satisfaction is increased (Fig. 8). This is consistent
with the intuition that UAVs locate victims in a compact area
more easily with less risk of running out of battery and crashing.

7.3. Discussion

As evident by the modeling and analysis of the two case
studies presented, our approach enables quantitative evaluation
of goal satisfaction based on design time decisions on deployment
choices and individual concern substitution that are crucial in the
requirements engineering process.

The analysis workflows inherent in our approach, represent
a general solution schema that can be used to tackle different
kinds of CPSS models whose key design dimensions are spatial
activity in the physical space and interaction, while their sys-
tem mission can be specified in terms of success–failure states.
Straightforward examples of CPSS systems can be smart build-
ings or cities, with scenarios ranging from disaster management
or infrastructural maintenance to robotic applications. However,
depending on the specific scenario, different extensions may be
required, and the general modeling discipline presented would
need to be enriched with domain-specific information by the
designer (e.g. timing aspects). However, we believe that in the
present paper we lay the foundations for analysis of a multitude
of CPSS.

Notice that the system development is facilitated since exper-
imentation within the early design process is possible. For exam-
ple, switching between different spatial models – while keeping
other models stable – entails solely invoking the composition pro-
cedure over the other spatial models. Switching between different
spatial layouts was not demonstrated in the evaluation, since
it would be unfeasible to demonstrate quantitative comparisons
between models (as each city would be different). Instead, we
studied the impact of the limiting the size of the same spatial
activity model, by decreasing the size of the search area in a
controlled manner.

Regarding performance aspects, results of our evaluation indi-
cate the feasibility of the approach (i.e. with respect to traditional,
explicit-state verification). We additionally report on additional
experiments over the disaster scenario case and investigate how
analysis times are affected by enlarging scope of spatial activity
and numbers of behavior models considered. Consider a ran-
domly generated city with 500 buildings, where 1000 victims are
located and 20 UAVs are deployed to search for them. The analysis
time required for this scenario is nearly 33 min. Although the
analysis time is relatively large, analysis itself is a design time
activity thus such performance is not an issue. Overall, we believe
that the analysis results signify that our approach is scalable even
to larger models and indeed fit for design time requirements
validation of CPSS. The advantage of statistical model checking
is evident; analyses for the experiments considered would be
infeasible with traditional, explicit-state model checking verifica-
tion. This is because both the number of active agents (UAVs and
victims) as well as the city sizes are large.



N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742 11

Fig. 6. Goal satisfaction over different distances between UAV and victims.

Fig. 7. Goal satisfaction over different interaction activities.

Fig. 8. Goal satisfaction over different spatial activities.

8. Conclusions

Within the context of complex cyber–physical space systems,
support for early requirements validation is crucial to the de-
sign process. To this end, we outlined a systematic approach to
high-level reasoning through separation of key recurrent system
concerns and formally defined integration of models that capture
them. Our contribution consists of a framework unifying existing
techniques for the engineering of cyber–physical space systems

through semi-automation of model integration, enabling design-
time validation through statistical model checking. The proposed
approach has been applied to two case studies that confirm that
design can be generally decomposed through modeling concerns
corresponding to spatial and interaction activities and require-
ments. While we defer a thorough discussion of assumptions and
limitations to future work, we plan to investigate system require-
ments expressibility and influence on system requirements from
other concerns, such as changes on geographical or spatial layout,
or planning. Additionally, we plan to consider cyber–physical
domain-related particulars like sensing and actuation.

CRediT authorship contribution statement

Nianyu Li: Methodology, Conceptualization, Investigation,
Writing - original draft. Christos Tsigkanos: Methodology, Con-
ceptualization, Resources, Writing - original draft. Zhi Jin: Con-
ceptualization, Funding acquisition, Supervision, Writing - review
& editing. Zhenjiang Hu: Conceptualization, Project administra-
tion, Writing - review & editing. Carlo Ghezzi: Conceptualization,
Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



12 N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742

Acknowledgments

Research partially supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 61620106007 and
61751210, as well as Lise Meitner FWF Austria project M 2778-N
‘‘EDENSPACE’’.

References

Akkaya, I., Derler, P., Emoto, S., Lee, E.A., 2016. Systems engineering for industrial
cyber-physical systems using aspects. Proc. IEEE 104 (5), 997–1012, [Online].
Available: https://doi.org/10.1109/JPROC.2015.2512265.

Alur, R., Dill, D.L., 1994. A theory of timed automata. Theoret. Comput. Sci. 126
(2), 183–235.

Anon, 2000. Proceedings of the IEEE International Conference on Systems, Man &
Cybernetics: ‘‘Cybernetics Evolving to Systems, Humans, Organizations, and
their Complex Interactions’’. Sheraton Music City Hotel, Nashville, Tennessee,
USA, 8–11 October 2000, IEEE, [Online]. Available: http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=7099.

Anon, 2012. FUZZ-IEEE 2012, IEEE International Conference on Fuzzy Systems,
Proceedings. Brisbane, Australia, June 10–15, 2012, IEEE, [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6241469.

Anon, 2019. Accompanied source code, specifications and models. http://178.62.
206.217/validation-smc-integration/.

Baier, C., Katoen, J.-P., et al., 2008. Principles of Model Checking, Vol. 26202649.
MIT Press, Cambridge.

Beauquier, D., 2003. On probabilistic timed automata. Theoret. Comput. Sci.
292 (1), 65–84, [Online]. Available: https://doi.org/10.1016/S0304-3975(01)
00215-8.

Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T., 2014. A
review of statistical model checking pitfalls on real-time stochastic models.
In: International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation. Springer, pp. 177–192.

Brim, L., Cerná, I., Vareková, P., Zimmerova, B., 2006. Component-interaction
automata as a verification-oriented component-based system specification.
ACM SIGSOFT Softw. Eng. Notes 31 (2), [Online]. Available: http://doi.acm.
org/10.1145/1118537.1123063.

Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z., 2012. UPPAAL-SMC: Statistical model checking for priced timed
automata. arXiv:1207.1272.

Clarke, E.M., Grumberg, O., Peled, D.A., 1999. Model Checking. MIT Press.
Clarke, E.M., Zuliani, P., 2011. Statistical model checking for cyber-physical

systems. In: Automated Technology for Verification and Analysis, 9th In-
ternational Symposium, ATVA 2011, Taipei, Taiwan, October 11–14, 2011.
Proceedings, pp. 1–12, [Online]. Available: https://doi.org/10.1007/978-3-
642-24372-1_1.

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., 2015. Uppaal
SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17 (4), 397–415, [Online].
Available: https://doi.org/10.1007/s10009-014-0361-y.

David, A., Larsen, K., Legay, A., Mikučionis, M., Poulsen, D., Van Vliet, J., Wang, Z.,
2011. Statistical model checking for networks of priced timed automata. In:
Formal Modeling and Analysis of Timed Systems. Springer.

Dearden, R., Friedman, N., Russell, S.J., 1998. Bayesian Q-learning. In: Proceedings
of the Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98,
July 26–30, 1998, Madison, Wisconsin, USA, pp. 761–768, [Online]. Available:
http://www.aaai.org/Library/AAAI/1998/aaai98-108.php.

Demir, K.A., 2015. Multi-view software architecture design: Case study of a
mission-critical defense system. Comput. Inf. Sci. 8 (4), 12–31.

Dijkstra, E.W., 1982. On the role of scientific thought. In: Selected Writings on
Computing: A Personal Perspective. Springer, pp. 60–66.

Duric, B.O., Rincon, J.A., Carrascosa, C., Schatten, M., Julián, V., 2019. MAMbO5:
a new ontology approach for modelling and managing intelligent virtual
environments based on multi-agent systems. J. Ambient Intell. Humaniz.
Comput. 10 (9), 3629–3641, [Online]. Available: https://doi.org/10.1007/
s12652-018-1089-4.

Eastman, C., Eastman, C.M., Teicholz, P., Sacks, R., 2011. BIM Handbook: A
Guide to Building Information Modeling for Owners, Managers, Designers,
Engineers and Contractors. J.W & S.

Fahrenberg, U., Legay, A., Thrane, C.R. (Eds.), 2012. Proceedings Quantities in
Formal Methods. QFM 2012, In: EPTCS, vol. 103, Paris, France, 28 August
2012, [Online]. Available: https://doi.org/10.4204/EPTCS.103.

Ferber, J., Michel, F., Báez-Barranco, J., 2004. AGRE: Integrating environments
with organizations. In: Environments for Multi-Agent Systems, First Interna-
tional Workshop, E4MAS 2004, New York, NY, USA, July 19, 2004, Revised
Selected Papers, pp. 48–56, [Online]. Available: https://doi.org/10.1007/978-
3-540-32259-7_2.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M., 1992.
Viewpoints: A framework for integrating multiple perspectives in system
development. Int. J. Softw. Eng. Knowl. Eng. 2 (1), 31–57.

Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M., 2018. Agent-oriented
cooperative smart objects: From iot system design to implementation. IEEE
Trans. Syst. Man Cybern. A 48 (11), 1939–1956, [Online]. Available: https:
//doi.org/10.1109/TSMC.2017.2780618.

Foster, H., Magee, J., Kramer, J., Uchitel, S., 2006. Adaptable software architectures
and task synthesis for uavs. In: Systems Engineering for Autonomous
Systems (SEAS) DTC Conference.

George, M., Radu, C., Daniel, K., Alec, B., 2018. In: Ioannis, H., Vasile, P.
(Eds.), Assurance in Reinforcement Learning Using Quantitative Verification.
Springer International Publishing, Cham, pp. 71–96.

Ghezzi, C., Jazayeri, M., Mandrioli, D., 2003. Fundamentals of Software
Engineering, second ed. Prentice Hall.

Iftikhar, M.U., Ramachandran, G.S., Bollansée, P., Weyns, D., Hughes, D., 2017.
DeltaIoT: A self-adaptive internet of things exemplar. In: 12th IEEE/ACM
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2017, Buenos Aires, Argentina, May 22–23,
2017, pp. 76–82, [Online]. Available: https://doi.org/10.1109/SEAMS.2017.21.

Jégourel, C., Legay, A., Sedwards, S., 2013. Importance splitting for statistical
model checking rare properties. In: Computer Aided Verification - 25th
International Conference, CAV2013, Saint Petersburg, Russia, July 13–19,
2013. Proceedings, pp. 576–591, [Online]. Available: https://doi.org/10.1007/
978-3-642-39799-8_38.

Jin, Z., 2018. Environment Modeling Based Requirements Engineering for
Software Intensive Systems. Elsevier, Morgan Kaufmann Publisher.

Kalajdzic, K., Jégourel, C., Lukina, A., Bartocci, E., Legay, A., Smolka, S.A., Grosu, R.,
2016. Feedback control for statistical model checking of cyber-physical
systems. In: Leveraging Applications of Formal Methods, Verification and
Validation: Foundational Techniques - 7th International Symposium, ISoLA
2016, Imperial, Corfu, Greece, October 10–14, 2016, Proceedings, Part I, pp.
46–61, [Online]. Available: https://doi.org/10.1007/978-3-319-47166-2_4.

Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T., 2009. Re-embodiment
of honeybee aggregation behavior in an artificial micro-robotic system.
Adapt. Behav. 17 (3), 237–259, [Online]. Available: https://doi.org/10.1177/
1059712309104966.

Kolbe, T., Gröger, G., Plümer, L., 2005. CityGML: Interoperable access to 3D city
models. In: Geo-information for Disaster Management. Springer.

Koymans, R., 1990. Specifying real-time properties with metric temporal logic.
Real-Time Syst. 2 (4), 255–299, [Online]. Available: https://doi.org/10.1007/
BF01995674.

Kwiatkowska, M., Norman, G., Parker, D., 2011. PRISM 4.0: Verification of
probabilistic real-time systems. In: Proc. 23rd International Conference on
Computer Aided Verification. CAV’11, In: LNCS, vol. 6806, Springer, pp.
585–591.

Larsen, K.G., Legay, A., 2014. Statistical model checking past, present, and future.
In: International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation. Springer, pp. 135–142.

Larsen, K.G., Legay, A., 2016. Statistical model checking: Past, present, and
future. In: Leveraging Applications of Formal Methods, Verification and
Validation: Foundational Techniques - 7th International Symposium, ISoLA
2016, Imperial, Corfu, Greece, October 10–14, 2016, Proceedings, Part I, pp.
3–15, [Online]. Available: https://doi.org/10.1007/978-3-319-47166-2_1.

Legay, A., Delahaye, B., Bensalem, S., 2010. Statistical model checking: An
overview. In: RV, Vol. 10. Springer, pp. 122–135.

Leitão, P., Colombo, A.W., Karnouskos, S., 2016. Industrial automation based
on cyber-physical systems technologies: Prototype implementations and
challenges. Comput. Ind. 81, 11–25, [Online]. Available: https://doi.org/10.
1016/j.compind.2015.08.004.

Li, N., Bai, D., Peng, Y., Yang, Z., Jiao, W., 2018. Verifying stochastic behaviors
of decentralized self-adaptive systems: A formal modeling and simulation
based approach. In: 2018 IEEE International Conference on Software Quality,
Reliability and Security, QRS 2018, Lisbon, Portugal, July 16–20, 2018, pp.
67–74, [Online]. Available: https://doi.org/10.1109/QRS.2018.00020.

Mascardi, V., Weyns, D., 2018. Engineering multi-agent systems Anno 2025. In:
Engineering Multi-Agent Systems - 6th International Workshop, EMAS 2018,
Stockholm, Sweden, July 14–15, 2018, Revised Selected Papers, pp. 3–16,
[Online]. Available: https://doi.org/10.1007/978-3-030-25693-7_1.

Nikiforova, O., Kirikova, M., 2004. Two-hemisphere model driven approach:
Engineering based software development. In: Advanced Information Systems
Engineering, 16th International Conference, CAiSE 2004, Riga, Latvia, June
7–11, 2004, Proceedings, pp. 219–233, [Online]. Available: https://doi.org/
10.1007/978-3-540-25975-6_17.

Norman, G., Parker, D., Sproston, J., 2013. Model checking for probabilistic timed
automata. Form. Methods Syst. Des. 43 (2), 164–190, [Online]. Available:
https://doi.org/10.1007/s10703-012-0177-x.

https://doi.org/10.1109/JPROC.2015.2512265
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb2
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7099
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7099
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7099
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6241469
http://178.62.206.217/validation-smc-integration/
http://178.62.206.217/validation-smc-integration/
http://178.62.206.217/validation-smc-integration/
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb6
https://doi.org/10.1016/S0304-3975(01)00215-8
https://doi.org/10.1016/S0304-3975(01)00215-8
https://doi.org/10.1016/S0304-3975(01)00215-8
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb8
http://doi.acm.org/10.1145/1118537.1123063
http://doi.acm.org/10.1145/1118537.1123063
http://doi.acm.org/10.1145/1118537.1123063
http://arxiv.org/abs/1207.1272
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb11
https://doi.org/10.1007/978-3-642-24372-1_1
https://doi.org/10.1007/978-3-642-24372-1_1
https://doi.org/10.1007/978-3-642-24372-1_1
https://doi.org/10.1007/s10009-014-0361-y
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb14
http://www.aaai.org/Library/AAAI/1998/aaai98-108.php
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb17
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb17
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb17
https://doi.org/10.1007/s12652-018-1089-4
https://doi.org/10.1007/s12652-018-1089-4
https://doi.org/10.1007/s12652-018-1089-4
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb19
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb19
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb19
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb19
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb19
https://doi.org/10.4204/EPTCS.103
https://doi.org/10.1007/978-3-540-32259-7_2
https://doi.org/10.1007/978-3-540-32259-7_2
https://doi.org/10.1007/978-3-540-32259-7_2
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb22
https://doi.org/10.1109/TSMC.2017.2780618
https://doi.org/10.1109/TSMC.2017.2780618
https://doi.org/10.1109/TSMC.2017.2780618
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb26
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb26
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb26
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb29
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb29
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb29
https://doi.org/10.1007/978-3-319-47166-2_4
https://doi.org/10.1177/1059712309104966
https://doi.org/10.1177/1059712309104966
https://doi.org/10.1177/1059712309104966
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb32
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb35
https://doi.org/10.1007/978-3-319-47166-2_1
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb37
https://doi.org/10.1016/j.compind.2015.08.004
https://doi.org/10.1016/j.compind.2015.08.004
https://doi.org/10.1016/j.compind.2015.08.004
https://doi.org/10.1109/QRS.2018.00020
https://doi.org/10.1007/978-3-030-25693-7_1
https://doi.org/10.1007/978-3-540-25975-6_17
https://doi.org/10.1007/978-3-540-25975-6_17
https://doi.org/10.1007/978-3-540-25975-6_17
https://doi.org/10.1007/s10703-012-0177-x


N. Li, C. Tsigkanos, Z. Jin et al. / The Journal of Systems & Software 170 (2020) 110742 13

Nuseibeh, B., Kramer, J., Finkelstein, A., 1993. Expressing the relationships
between multiple views in requirements specification. In: Proceedings of the
15th International Conference on Software Engineering, Baltimore, Maryland,
USA, May 17–21, 1993, pp. 187–196.

Nuseibeh, B., Kramer, J., Finkelstein, A., 1994. A framework for expressing the
relationships between multiple views in requirements specification. IEEE
Trans. Softw. Eng. 20 (10), 760–773, [Online]. Available: https://doi.org/10.
1109/32.328995.

Rodriguez-Navas, G., Proenza, J., 2013. Using timed automata for modeling
distributed systems with clocks: Challenges and solutions. IEEE Trans. Softw.
Eng. 39 (6), 857–868.

Ruijters, E., Stoelinga, M., 2016. Better railway engineering through statistical
model checking. In: International Symposium on Leveraging Applications of
Formal Methods. Springer, pp. 151–165.

Sibay, G.E., Braberman, V.A., Uchitel, S., Kramer, J., 2013. Synthesizing modal
transition systems from triggered scenarios. IEEE Trans. Softw. Eng. 39 (7),
975–1001, [Online]. Available: https://doi.org/10.1109/TSE.2012.62.

Stanislav Safaric, K.M., 2007. ZigBee Wireless Standard. IEEE.
Tsigkanos, C., Kehrer, T., Ghezzi, C., 2016a. Architecting dynamic cyber-physical

spaces. Computing 98 (10), 1011–1040.
Tsigkanos, C., Kehrer, T., Ghezzi, C., 2017. Modeling and verification of evolving

cyber-physical spaces. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, pp. 38–48.

Tsigkanos, C., Kehrer, T., Ghezzi, C., Pasquale, L., Nuseibeh, B., 2016b. Adding
static and dynamic semantics to building information models. In: Proceed-
ings of the 2nd International Workshop on Software Engineering for Smart
Cyber-Physical Systems. ACM, pp. 1–7.

Tsigkanos, C., Li, N., Jin, Z., Hu, Z., Ghezzi, C., 2018. On early statistical
requirements validation of cyber-physical space systems. In: Proceedings of
the 4th International Workshop on Software Engineering for Smart Cyber-
Physical Systems, ICSE 2018, Gothenburg, Sweden, May 27, 2018, pp. 13–18,
[Online]. Available: http://doi.acm.org/10.1145/3196478.3196485.

Tsigkanos, C., Nenzi, L., Loreti, M., Garriga, M., Dustdar, S., Ghezzi, C., 2019.
Inferring analyzable models from trajectories of spatially-distributed internet
of things. In: Proceedings of the 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2019,
Montreal, QC, Canada, May 25–31, 2019, pp. 100–106.

Uchitel, S., 2003. Incremental Elaboration of Scenario-Based Specifications and
Behaviour Models Using Implied Scenarios (Ph.D. dissertation). Imperial
College, London, UK, [Online]. Available: http://ethos.bl.uk/OrderDetails.do?
uin=uk.bl.ethos.401938.

Visconti, E., Tsigkanos, C., Hu, Z., Ghezzi, C., 2019. Model-driven design of city
spaces via bidirectional transformations. In: 22nd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MOD-
ELS 2019, Munich, Germany, September 15–20, 2019, pp. 45–55, [Online].
Available: https://doi.org/10.1109/MODELS.2019.00-16.

Weyns, D., 2010. Overview of architecture-based design of multi-agent systems.
In: Architecture-Based Design of Multi-Agent Systems. Springer Berlin Hei-
delberg, Berlin, Heidelberg, pp. 9–25, [Online]. Available: https://doi.org/10.
1007/978-3-642-01064-4_2.

Weyns, D., Michel, F., 2014. Agent environments for multi-agent systems - A
research roadmap. In: Agent Environments for Multi-Agent Systems IV - 4th
International Workshop, E4MAS 2014 - 10 Years Later, Paris, France, May
6, 2014, Revised Selected and Invited Papers, pp. 3–21, [Online]. Available:
https://doi.org/10.1007/978-3-319-23850-0_1.

Weyns, D., Omicini, A., Odell, J., 2007. Environment as a first class abstraction in
multiagent systems. Auton. Agents Multi-Agent Syst. 14 (1), 5–30, [Online].
Available: https://doi.org/10.1007/s10458-006-0012-0.

Younes, H.L., 2005. Verification and Planning for Stochastic Processes with
Asynchronous Events. Tech. Rep., Carnegie-Mellon University - Pittsburgh
PA School of Computer Science.

Zomaya, A.Y. (Ed.), 2006. Handbook of Nature-Inspired and Innovative Com-
puting - Integrating Classical Models with Emerging Technologies. Springer,
[Online]. Available: https://doi.org/10.1007/0-387-27705-6.

Nianyu Li received a B.Sc. degree in software engi-
neering from Nanjing University of Aeronautics and
Astronautics. She is working towards her Ph.D. in
Computer Software and Theory under Prof. Zhi Jin and
Prof. Wenping Jiao at Peking University. Her research
interests include (human–involved) self-adaptive sys-
tems, cyber–physical systems, modeling and formal
verification. She was a visiting research student at Na-
tional Institute of Informatics (NII), Japan, and Carnegie
Mellon University (CMU), USA.

Christos Tsigkanos is Lise Meitner Fellow at TU Vienna
(Austria). Formerly, he was postdoctoral researcher
at the Distributed Systems Group at TU Vienna and
at Politecnico di Milano (Italy), where he received
(2017) his Ph.D. defending a thesis entitled ‘‘Modelling
and Verification of Evolving Cyber-Physical Spaces’’.
He holds a B.Sc. degree in computer science from
University of Athens (Greece) and a MSc degree in
software engineering from University of Amsterdam
(the Netherlands). His research interests lie in the
intersection of distributed systems and software en-

gineering, and include dependable self-adaptive and cyber–physical systems,
requirements engineering and formal verification.

Zhi Jin received the Ph.D. degree in computer science
from Changsha Institute of Technology, China, in 1992.
She is currently a professor of computer science at
Peking University. She is deputy director of Key Lab
of High Confidence Software Technologies (Ministry of
Education) at Peking University. Her research interests
include software engineering, requirements Engineer-
ing, knowledge engineering, and machine learning. She
is/was principle investigator of more than 10 national
competitive grants, including the chief scientist of a
national basic research project (973 project) of the

Ministry of Science and Technology of China. She has more than 20 years of
experience in requirements engineering and knowledge engineering research,
(co-)authors three books and has more than 200 publications in these areas. She
is currently a senior member of the IEEE, a standing board member of China
Computer Federation (CCF), the director of CCF Technical Committee of System
Software and was elected to CCF fellow in 2012. She has served as general and
program co-chair of several prestigious international conferences (e.g., IEEE/ACM
International Conference on Requirements Engineering), and editorial board
member of a number of high-quality journals (e.g., IEEE Transactions on Software
Engineering and Empirical Software Engineering).

Zhenjiang Hu is Chair Professor in Department of Com-
puter Science and Technology, EECS, Peking University.
He received his B.S. and M.S. degrees from Shanghai
Jiao Tong University in 1988 and 1991, respectively,
and Ph.D. degree from University of Tokyo in 1996. He
was a lecturer (1997–2000) and an associate professor
(2000–2008) in University of Tokyo, a full professor
at NII/SOKENDAI (2008–2018), and a full professor at
NII/University of Tokyo in (2018–2019), before joining
Peking University. His main research interest is in
programming languages and software engineering in

general, and functional programming, parallel programming, and bidirectional
transformation in particular. He is Fellow of JFES (Japan Federation of Engi-
neering Society), ACM Distinguished Scientist, Fellow of IEEE, and Member of
Academy of Europe.

Carlo Ghezzi is a full professor at the Dipartimento di
Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, Italy. He is an ACM Fellow, an IEEE Fellow,
a member of the European Academy of Sciences and
of the Italian Academy of Sciences. He received the
ACM SIGSOFT Outstanding Research Award (2015) and
the Distinguished Service Award (2006). He is past
President of Informatics Europe. He has been the Editor
in Chief of the ACM Trans. on Software Engineering
and Methodology and Associate Editor of IEEE Trans.
on Software Engineering. He is currently an Associate

Editor of the Communications of the ACM and Science of Computer Program-
ming. His research has been mostly focusing on different aspects of software
engineering. He co-authored over 200 papers and 8 books. He coordinated
several national and international research projects and has been a recipient
of an ERC Advanced Grant.

https://doi.org/10.1109/32.328995
https://doi.org/10.1109/32.328995
https://doi.org/10.1109/32.328995
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb46
https://doi.org/10.1109/TSE.2012.62
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb48
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb51
http://doi.acm.org/10.1145/3196478.3196485
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401938
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401938
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401938
https://doi.org/10.1109/MODELS.2019.00-16
https://doi.org/10.1007/978-3-642-01064-4_2
https://doi.org/10.1007/978-3-642-01064-4_2
https://doi.org/10.1007/978-3-642-01064-4_2
https://doi.org/10.1007/978-3-319-23850-0_1
https://doi.org/10.1007/s10458-006-0012-0
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30169-2/sb59
https://doi.org/10.1007/0-387-27705-6

	Early validation of cyber–physical space systems via multi-concerns integration
	Introduction
	Related work
	Approach overview
	Modeling concerns in CPSS
	Modeling formalism
	Modeling spatial activity
	Modeling success and failure
	Modeling interaction

	Model integration of agent behavior
	System validation
	Property specification
	Early validation with statistical model checking

	Evaluation
	Honeybee swarm micro-robotics
	Emergency response in a smart city
	Modeling design concerns within the smart city space
	Experiment setup and results

	Discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


