
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

On the Interplay Between Cyber and
Physical Spaces for Adaptive Security

Christos Tsigkanos, Liliana Pasquale, Carlo Ghezzi, IEEE Fellow , and Bashar Nuseibeh

Abstract—Ubiquitous computing is resulting in a proliferation of cyber-physical systems (CPS) that host or manage valuable physical
and digital assets. These assets can be harmed by malicious agents through both cyber-enabled or physically-enabled attacks,
particularly ones that exploit the often ignored interplay between the cyber and physical world. The explicit representation of spatial
topology is key to supporting adaptive security policies. In this paper we explore the use of Bigraphical Reactive Systems to model the
topology of cyber and physical spaces and their dynamics. We utilise such models to perform speculative threat analysis through
model checking to reason about the consequences of the evolution of topological configurations on the satisfaction of security
requirements. We further propose an automatic planning technique to identify an adaptation strategy enacting security policies at
runtime to prevent, circumvent, or mitigate possible security requirements violations. We evaluate our approach using a case study
concerned with countering insider threats in a building automation system.

F

1 INTRODUCTION

Computing and communication capabilities are increasingly
being embedded into physical spaces, blurring the bound-
ary between cyber and physical worlds [1], and offering
novel attack opportunities to malicious agents [2]. For exam-
ple, cyber-enabled physical attacks can occur when physical
assets are cyber-controlled (e.g., digital access control to
buildings). Similarly, physically-enabled cyber attacks can
occur when physical access to assets enables cyber attacks
(e.g., access to a particular computer may facilitate malicious
access to digital information held on that computer). Under-
standing and managing the security threats that arise from
the deployment of such cyber-physical systems (CPS) is a
key challenge that is exacerbated by the interplay between
the cyber and physical space (CPSp) that such systems
inhabit. Although the literature is rich in accounts of se-
curity risk assessment methods (e.g., [3], [4]), these methods
consider physical and cyber security separately [5] and are
therefore unable to support the analysis of security threats
arising from the interplay between the cyber and physical
spaces that characterise a CPS operational environment.

In previous work [6] we advocated that the topology
of cyber and physical spaces — their structure in terms
of key elements and their relationships — can provide a
system with both structural and semantic awareness of
security relevant contextual characteristics. These include
the location of assets being protected and the security con-
trols that should be enacted in their proximity. Moreover,
the location of potentially malicious agents can increase
the threat of harm to assets in their vicinity. Discovering
threats arising from the interplay between cyber and phys-

• C. Tsigkanos and C. Ghezzi are with Politecnico di Milano, Italy.
E-mail: {christos.tsigkanos | carlo.ghezzi}@polimi.it

• L. Pasquale is with Lero, University of Limerick, Ireland.
E-mail: liliana.pasquale@lero.ie

• B. Nuseibeh is with Lero, University of Limerick, Ireland, and with the
Open University, Milton Keynes, UK.
E-mail: b. nuseibeh@open.ac.uk

ical spaces suggests the need for an explicit representation
of the topology of such spaces including their dependencies.
In previous work [7] we investigated the use of the Ambient
Calculus [8] to represent the topology of physical spaces to
help identify and prevent potential future violations of secu-
rity requirements. However, the Ambient Calculus encodes
computation only as process-algebraic structural changes
in a hierarchy and hinders reasoning about communication
and links, key characteristics of cyber spaces. Furthermore,
it does not allow reasoning about actions in the cyber space
that are enabled by specific conditions in the physical space
and vice-versa.

Changes in the topology, often triggered by movements
of objects or agents in the physical or cyber space, can
change a CPS attack surface dynamically. Although the
primitives of change are well understood, their effect on the
satisfaction of security requirements is not easy to predict as
there can be complex sequences of actions leading to a vio-
lation. An adaptive security approach is needed to discover
possible security threats determined by topological changes
and then counteract those by enacting security policies to
circumvent, prevent, or mitigate violations.

In this paper, we propose an approach to engineering
adaptive security for CPS that exploits a formal model of
the topology of cyber and physical spaces to discover and
counteract at runtime threats that arise from topological
changes. We do so by choosing to work with a form of
Bigraphical Reactive Systems [9] as an underlying modelling
formalism and providing novel speculative threat analysis and
adaptation planning techniques to, respectively, discover and
counteract security threats at runtime. Bigraphical Reactive
Systems (BRS) can express the topology of cyber and phys-
ical spaces, their interplay, and the security requirements
to be satisfied. We enable adaptation by maintaining a live
model representation of the CPSp characterising a system’s
operational environment. We perform speculative threat
analysis by utilising model checking for reasoning about
the consequences that topological changes can have on the
satisfaction of security requirements. We also propose a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

planning technique to generate an adaptation strategy that
prescribes what security policies to enact in order to prevent,
circumvent, or mitigate possible violations of security re-
quirements identified through analysis. To support the pro-
posed analysis and planning techniques, we implemented a
prototype verification tool. We motivate and illustrate our
approach using a case study concerned with a modern bank
branch that provides additional financial services through
a local cloudlet [10] and monitored by CCTV and security
guards. We evaluate our approach with respect to additional
requirements formulated following discussions with an in-
dustrial partner concerned with countering insider threats.
Our results demonstrate that our approach can identify and
counteract emerging security threats arising from the inter-
play between cyber and physical spaces. The performance
of our approach also confirms its applicability at runtime in
adapting security policies of realistic systems.

The main contributions of this paper can be summarised
as follows. We provide a novel approach to explicitly and
formally represent the interplay of cyber and physical
spaces in which systems operate. Based on this represen-
tation, we perform security analysis and planning to coun-
teract discovered threats automatically and adaptively, by
modifying security policies only when a security violation
can occur. To the best of our knowledge, this represents
an advancement with respect to traditional approaches,
which are often developed based on fixed boundaries and
assumptions. Our approach also has limitations. In partic-
ular, it does not account for inertia of the physical world
in the selection and enactment of an adaptation strategy.
Moreover, like other model-based security approaches in
literature, we assume correctness of the model of the CPSp.

The rest of the paper is structured as follows. Section 2
describes our motivating example and Section 3 presents
our approach for engineering topology aware adaptive se-
curity. Section 4 introduces BRS and how we adopt them to
model the topology of cyber and physical spaces. Section 5
and 6 describe the speculative threat analysis and planning
techniques, respectively. Section 7 discusses our evaluation
results and Section 8 describes related work. Section 9
concludes the paper.

2 MOTIVATING EXAMPLE

To motivate our work on adaptive security for CPS we intro-
duce an example used throughout the paper. The example
illustrates how changes in the topology of the cyber and
physical spaces that a CPS inhabits can lead to violations of
security requirements.

A modern bank branch offers traditional counter ser-
vices as well as advanced online services (e.g., investments,
financial consulting) through an available cloudlet [10], a
recent architectural innovation arising from the convergence
of mobile and cloud computing. It provides fast remote
cloud services to the mobile clients in its physical proximity,
i.e. connected to the local wireless network. A cloudlet
contains cached state from a remote cloud service and has
high connectivity to it. Cloudlets are increasingly being used
in diverse application domains, such as mobile commerce,
healthcare and military defense. In our example, a connec-
tion from a customer’s mobile device causes the provision-
ing of a new virtual machine (VM) on the cloudlet. The

bank branch also instantiates a Building Automation System
(BAS) comprising an infrastructure for controlling heating,
ventilation, and air-conditioning (HVAC), as well as CCTV
surveillance and lighting. The host manager located in the
server room controls appliances (lights, HVAC, CCTVs), by
sending commands to the network gateway that, in turn,
forwards them to the target appliances. Additional devices
include a server, desktop computers containing confidential
documents, and a printer. As commonly found in a bank,
safes containing valuable assets are placed in a safe room.

2.1 When Cyber Meets Physical
The operational environment of our example is shown in
Figure 1. The physical space includes the structure of the
building; the bank has a main area where counters are
placed and from which it is possible to access the wifi area
and a corridor. From the wifi area customers can connect
to the local wireless network to use banking services. A
customer connected to the network may request the pro-
visioning of more than one VM. The cloudlet has a fixed
capacity that for this example we assume to be four VMs.
The wifi area delimits the physical area within which it
is possible to connect1. From the corridor it is possible to
access private areas of the bank, including a server room,
offices, a safe room and a printer room. Figure 1 also
shows the location of physical objects (e.g., cloudlet, safe)
and agents (e.g., bank customers, security guards) in the
space. For example, Eve and Alice who are bank customers
are located in the wifi area, while the cloudlet, the host
manager and the HVAC are placed in the server room. The
topology of the physical space also describes proximity and
reachability relationships. In this paper, proximity indicates
whether entities are co-located; for example Mallory and
Trudy, who are a visiting technician and a security guard
respectively, are co-located in the same area. Reachability
indicates whether an agent can access a physical entity; for
example, Mallory can access the server room.

Eve
(Customer)

Wifi Access
Point

Alice
(Customer)

A-Info

Cloud
Service

Cloudlet

VM-1 VM-2

Host Manager

Wifi Area Server Room

HVAC

CCTV

L1

Mallory
(Technician) Trudy

(Guard)
Corridor

Safe
Room

Main
Area Office 1 Office 2

Printer
Room

Bob
(Banker)

L2

L3L4Doc

D1 D2

L5

L6

Printer

Gateway

Safe

Charlie
(Banker)

Fig. 1: Physical and cyber spaces of our example.

Like physical spaces, the topology of cyber spaces repre-
sents the structure of digital areas and the location of digital
objects in such areas, such as bank account information or
VMs. Some objects, such as mobile devices or the cloudlet,

1. Without loss of generality and for the sake of this running example,
we assume wireless connections occur only from the wifi area.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

can be conceived both as physical and digital entities. For
example, Alice’s mobile device delimits a digital area con-
taining Alice’s bank account information, while the cloudlet
delimits a digital area containing a set of provisioned VMs.
Proximity relationships indicate if two digital objects are
placed in the same area (e.g., if two VMs are hosted on the
same machine). Unlike in physical topologies, reachability
relationships are also realised through communication links.
For example, Alice’s information can reach a cloudlet’s VM
associated with Alice (e.g., VM-1) because of the logical
communication link between Alice’s mobile device and VM-
1. Although they are not shown in Figure 1 for reasons of
clarity, network connections also exist between the gateway
and the various digital devices, including ones belonging to
the BAS (e.g., HVAC, CCTVs and lights).

Topological properties of a physical space can enable
execution of actions in the cyber space. For example, the
physical location of an agent carrying a mobile device in the
wifi area allows her to connect to the wireless network and
allocate a VM. Similarly, topological properties of the cyber
space can enable execution of actions in the physical space.
For example, connection of a digital device to the local net-
work controlling BAS appliances allows sending commands
to physical appliances (e.g., the HVAC) connected to the
same network, possibly changing their behaviour.

The approach described in this paper aims at supporting
the design of secure cyber-physical spaces. The designer can
provide topological descriptions as well as specification of
security requirements with respect to security goals (confi-
dentiality, integrity, availability — CIA [11]). The following
security requirements aim to protect digital (SR1 and SR2)
and physical (SR3 and SR4) assets and operationalise such
CIA security goals.

• Availability of cloudlet services to connected customers: if
a customer is connected to the wireless network, then
at least one the following statements must be valid: i)
the customer has at least one VM allocated to her, ii)
the cloudlet has not reached its maximum capacity
(SR1).

• Confidentiality of customers’ information: information
transmitted by a bank customer to the cloudlet
should never be received by other customers (SR2).

• Integrity of the safe: agents should always be accom-
panied by a security guard when they are in the safe
room (SR3).

• Integrity of the appliances: appliances comprising the
BAS should never execute commands originating
from untrusted connected agents (SR4).

2.2 Adaptive Security in Cyber-Physical Systems

Different threats can arise dynamically when changes take
place in the cyber or physical space. In this paper a security
threat is conceived as a violation of a security goal [12].

Cyber threats can arise from changes in the cyber space
and may cause harm to a digital asset. For example, if
the cloudlet has reached its maximum capacity and Eve
connects to the wireless network, the cloudlet service avail-
ability (SR1) can be violated since Eve’s requests cannot be
met. A security policy to counter this threat could enforce
deallocation of a VM associated with another agent, or could

oblige another agent or Eve to disconnect from the wireless
network or leave the wifi area.

Physically-enabled cyber threats can arise from changes in
the physical space and may cause harm to a digital asset.
For example, assuming that Eve is in the main area, if she
moves to the wifi area, she could connect to the wireless net-
work and eavesdrop confidential information transmitted
between Alice and the cloudlet, violating SR2. A security
policy to counter this threat could prohibit unencrypted
communications between customers and the cloudlet at the
cost of increasing mobile device battery consumption, or
could prohibit Eve from connecting to the wireless network.

Physical threats can arise from changes in the physical
space and may harm a physical asset. For example, Mal-
lory is an external visitor who is initially co-located with
the security guard in the corridor. If she enters the safe
room while the security guard remains in the corridor, the
integrity of the safe could be violated. A security policy to
counter this threat could oblige the security guard to move
to the safe room to perform surveillance, or could prohibit
Mallory from entering it.

Cyber-enabled physical threats can arise from changes in
the digital space that can harm a physical asset, for example
by subverting the functioning of appliances comprising the
BAS which control heating, ventilation and lighting and
perform surveillance. Note that protocols used in BAS (e.g.,
KNX [13]) do not include security features, because of
limited resources or legacy deployments. Therefore, pass-
words employed to authenticate valid commands are sent in
cleartext on the network, thus allowing key sniffing [14] and
the possibility of actively subverting the correct functioning
of appliances. In our example, to guarantee the integrity of
the server, it is necessary to ensure the correct functioning
of the HVAC located in the server room. To achieve this aim
a security policy should prohibit execution by the HVAC of
malicious commands originating from untrusted agents.

To support such adaptive security scenarios, the ap-
proach we advocate here consists of (1) monitoring topolog-
ical changes in the operational environment, (2) identifying
possible requirements violations that can arise from future
topological configurations that may be entered by the CPSp,
and (3) planning and enacting security policies that counter
such possible violations.

3 TOPOLOGY AWARE ADAPTIVE SECURITY

Figure 2 provides an overview of our topology aware
adaptive security approach. Adaptation builds on a live
representation of the topology of the CPSp characterising
a system operational environment modelled using BRS [9].
Adaptive security is achieved by implementing the activities
of the MAPE (Monitoring, Analysis, Planning, Execution)
loop [15]. Analysis and Planning are responsible for iden-
tifying possible security requirements violations and gener-
ating an adaptation strategy, respectively. Monitoring and
Execution are responsible for enacting it at runtime.

During monitoring, events generated in the CPSp indi-
cating the execution of agents’ actions are received. For our
example, such events can indicate access to a room by an
agent, connection/disconnection of a mobile device to/from
the wireless network, provisioning/deprovisioning of VMs
on the cloudlet, and message exchanges between a mobile

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Enforceable Actions
+

Costs

SmartphonesGateway

Cloudlet

CPS Operational Environment

Monitoring

Events

Bigraphical Reactive System
Speculative Threat Analysis

Security
Requirements

S Model Checking

. . .

Violating States &
Neighbouring States

- Forbid Actions
- Enforce actions

Adaptation Strategy

X
Security Policy Selection

Execution

Adaptation Enactment

Planning

Model Update

HVAC
CCTV

Fig. 2: Our topology aware adaptive security approach.

device and a VM. The model of the space maintained at
runtime is also updated accordingly.

During speculative threat analysis, future topological con-
figurations of the space representing violations of security
requirements which can arise when agents perform actions
are identified through model checking. The component per-
forming analysis receives as input the model of the CPSp
and the security requirements. Analysis identifies configu-
rations where violations of security requirements take place,
as well as additional neighbouring configurations of the
CPSp before and after a violation.

During planning, an adaptation strategy that aims to
counteract future violations of security requirements is gen-
erated. It consists of a set of security policies to be enacted
at specific configurations of the CPSp. In this paper, a
security policy can prohibit execution of actions leading
to the violation of a security requirement, or could oblige
(enforce) execution of actions to circumvent or mitigate a
violation. This activity receives as input from the analysis
configurations where security requirements are violated as
well as their corresponding neighboring configurations. For
each violation, it identifies a security policy if one exists, or
prompts for a change in the design of the control system if
the violation cannot be handled.

During execution, the adaptation strategy is enacted on
the system. This activity receives as input the current con-
figuration of the CPSp from the monitoring activity, and
identifies if a specific state in the adaptation strategy is
reached. If that is the case, it enacts specific security policies
indicated in the adaptation strategy.

In this paper we focus on two critical activities of the
MAPE loop: analysis and planning. We assume adequate
monitoring is in place, as well as an execution environment
through which selected adaptation strategies are enacted.

4 MODELLING CYBER AND PHYSICAL SPACES

A modelling formalism for the topology of CPSp should
allow the representation of the structure of those spaces
and communication or linking among entities and agents. It
should also enable reasoning about the effects of topological

changes arising from (potentially concurrent) execution of
actions by digital and physical agents. Process calculi are
well established mathematical languages with well defined
semantics that allow reasoning about properties of concur-
rent systems. They are essentially models of processes or
agents interacting with each other and their environment.
Several process calculi have been proposed, such as π-
calculus [16], focusing on process migration, interaction and
communication via dynamic channels, and assuming a flat
process structure, or the Ambient Calculus [8], assuming
a hierarchical process structure. However, such formalisms
are not supportive of mechanisms to reason about topolog-
ical characteristics of CPSp affected by both structure of the
space as well as by links.

Bigraphs [9] are an emerging formalism for structures
in ubiquitous computing. They consider both linking and
structure. Bigraphical Reactive Systems (BRS) extend bi-
graphs with well defined semantics of dynamic behaviour
expressed as a set of reaction rules. These rules allow rea-
soning about possible future topological configurations of
the CPSp that are reachable from the current one, yielding a
branching structure. In this section, we introduce bigraphs
and BRS and explain how we have used them to model
CPSp, their dynamics, and how requirements are specified.

4.1 Bigraphs and BRS

Bigraphs consist of two graphs. A place graph is a forest, a
set of rooted trees defined over a set of nodes. A link graph
is a hypergraph composed of the same set of nodes of the
place graph and a set of edges each linking any number
of nodes; this graph represents generic many-to-many re-
lationships among nodes. Connections of an edge with its
nodes are called ports. Place and link graphs are orthogonal,
and edges between nodes can cross locality boundaries.
Bigraphs allow us to express topological characteristics of
CPSp; the place graph defines a hierarchical structure, which
can model topological properties like containment, while
the link graph can represent communication or some linking
among nodes. What follows is a rather informal presen-
tation of bigraphs as used in the scope of this paper; the
interested reader can refer to the work by Milner [9] for
complete definitions and proofs of the bigraphical theory.

Bigraphs can be described in algebraic terms (Formu-
lae 1a-1e); in Section 4.2 we introduce an equivalent rig-
orous graphical representation. P , Q, and U are controls
of bigraph nodes; controls are names that define a node’s
type. Nodes can be structured hierarchically through the
containment relationship, expressed in Formula 1a. Two
nodes may be placed at the same hierarchical structure level,
as shown in Formula 1b. Additionally, bigraphs can contain
sites, a special type of node (Formula 1c) that can be used to
denote a placeholder; sites can be used to indicate presence
of unspecified nodes. Each node control can be associated
with a number of named ports. If a single instance node
of a given type exists in the bigraph, the control uniquely
identifies that node. Otherwise, we use a port name as a way
to uniquely identify it. In Formula 1d the node identified
by control K and port names in list w also contains U .
Ports that appear in a formula with the same name are
connected, forming a hyper-edge, called link in the sequel.
In Formula 1e, W and R indicate different roots.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Room

Agent

trudy

6

Agent

mallory

Room

srvroom

Cloudlet

corridor

Room

0

AP

lanwifiarea

Room

main

4

1

Room

Safe

saferoom

Visitor

3

Guard
2

5

(a) Mallory is located with Trudy in the corridor.

Room

trudy mallorysrvroom corridor

Room

0

AP

lanwifiarea

Room

mainsaferoom

3

Agent

Guard
2

Room
Cloudlet

4 5

Room

Safe Visitor

1

Agent
6

(b) Mallory is located in the safe room.

Room

?

Agent

Safe

y

0
Visitor

1

(c) SR3a.

Fig. 3: Bigraph configuration before (a) and after (b) a reaction is applied, leading to integrity violation SR3 (c).

P.Q Nesting (P contains Q)

P | Q Juxtaposition of nodes

−i Site numbered i

Kw.(U) Node with control K having ports

with names in w. K contains U

W ‖ R Juxtaposition of bigraphs

(1a)
(1b)
(1c)
(1d)

(1e)

BRS support specification of dynamic behaviour by ex-
tending bigraphs with reaction rules defining possible recon-
figurations. Reaction rules are parametric and specify how a
bigraph can be modified by rewriting selectively some of its
portions. Reaction rules have the general form of R → R′,
where R is a redex and R′ is a reactum; both the redex and
reactum are bigraphs. In particular, if a part of a bigraph
that matches the redex is identified, it can be replaced with
the reactum, in a fashion similar to graph rewriting. The use
of reaction rules is illustrated informally in the next section
through examples.

4.2 BRS to Model Cyber and Physical Spaces
The notions of node nesting (containment) and linking of
bigraphs, can be used to model different aspects of a CPSp in
a unifying way. The semantic association between these bi-
graph notions and the real-world phenomena they represent
is not stated explicitly. We assume it is recorded separately
as part of the model documentation.

Containment defines a hierarchical node structure,
which can represent nesting of entities, like an agent re-
siding in a room, or reachability relationships such as a
room being physically reachable from another through a
door. Additionally, it can be used to model a role held by
some entity, by nesting a node representing a role in it. For
example, the main room in Figure 1 can be modelled by a
node that contains a node representing the wifi area; this
indicates reachability of the wifi area from the main room.
Likewise, the corridor node contains a node representing
agent Mallory. Containment can also indicate the boundary
within which an entity resides (e.g., a node representing
Alice’s digital information can be nested within a node
representing her mobile device, to indicate the physical
boundary within which the information resides).

Bigraph links are defined by associating nodes to specific
port names; for CPSp modelling, this can be utilised in two
ways: identifying instances of nodes, or representing some
semantic relationship (e.g. connectivity) among nodes, by
linking them to the same port name. We partition the set of

port names by some criteria recorded as part of the domain
model; e.g. set A for names of agents and set R for names
of rooms.

Figure 3a shows a graphical representation of a bigraph
configuration partially modelling the CPSp of our example.
Agent and Room are examples of node controls signifying
a node type. Containment is represented graphically by
nesting a node inside another. Room with name corridor,
contains Agents with names mallory and trudy, as well
as another Room (the safe room). A token node V isitor is
contained in Agent with name mallory, signifying that she
is a visitor; similarly with the security guard. Sites (graph-
ically represented by shaded boxes) denote the presence
of other, unspecified nodes. For example, the fact that the
Room named corridor also contains other entities besides
the two agents and the safe room, is collectively represented
by a site placeholder (6). By linking controls to names, ports
are used to identify instances of controls (e.g., mallory
and saferoom); they are represented graphically as black
bullets. Ports can also be linked together to form named
edges; for example, edge lan betweenAP (access point) and
Cloudlet represents connectivity between them. Finally, the
dotted outer box graphically represents the root. Using the
algebraic notation, the same bigraph of Figure 3a can be
represented as in Formula 2.

Roommain.(Roomwifiarea.(APlan | −0)
∣∣ Roomcorridor.((2)

Agentmallory .(V isitor | −1)
∣∣ Agenttrudy .(Guard | −2) | −6

∣∣
Roomsaferoom.(Safe|−3)

∣∣ Roomsrvroom.(Cloudletlan.(−4)
∣∣−5)))

BRS and CPSp Dynamics
Reaction rules allow us to model the actions, whose

occurrence in the real world cause the evolution of the CPSp
over time. The following example models the configuration
change due to an agent entering a room with which she is at
the same hierarchical level. Sites in the redex can represent
the matching of arbitrary nodes present in a specific part of
a bigraph. In the reactum, nodes belonging to the matched
subgraph will be placed in the positions of the correspond-
ing sites, identified by the same number. Awareness of
which entities are involved in actions executed in the CPSp
must be reflected in a reaction specification. Moreover, the
reaction rule must be expressed in a parametric way, to
account for arbitrary agents and rooms. Thus, we specify
along with the reaction, variables ranging over sets of port
names that indicate the enactor entity (an agent in A) along
with other subject entities involved in the changes modelled

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

by the reaction (a room inR). Use of variables is not strictly
part of bigraphs, but was also proposed by [17].[
n ∈ A, r ∈ R

]
Agentn.−0 | Roomr.−1 | −2 →

Roomr.(Agentn.−0 | −1) | −2 (3)

Formula 3 and Figure 4 show an enter room reaction,
where Agent n moves into Room r, while all the other ele-
ments contained either in the Agent n (signified by site −0),
around (site −2) or in the adjacent Room r (site −1) are not
modified. In the enter room reaction, port n corresponds
to the name of the agent, and port r corresponds to the
room involved in the reaction. Note that the enter room
reaction can be applied to the configuration of Figure 3a
(Formula 2), where agent named mallory is at the same
hierarchical level with the room named saferoom. After
the application of the reaction, she is then contained in it,
resulting in the configuration of Figure 3b.

Agent

n

0

Room

1 2

r

(a)
Room

1 2

 r

Agent

n

0

(b)

Fig. 4: (a) redex, and (b) reactum of the enter room reaction.

Besides entering or exiting rooms, other reactions can be
specified to model various actions that can be performed
in the system. For example, bank customers can connect to
the wireless network when they are located in the wifi area
(connect wifi). They can also use the bank financial ser-
vices through their mobile device, which must be connected
to the wireless network; a new service request can cause
the provisioning of a new VM on the cloudlet (create vm).
Moreover, customers can transmit information tokens either
in an unencrypted (tx) or encrypted (tx enc) way. Given a
bigraph that describes the initial configuration, the system
evolves by applying reaction rules, which model the oc-
curence of possible actions, generating new configurations.
At each step, several applications of reaction rules may be
possible, thus branching off possible new configurations.

4.3 Specifying Security Requirements for CPSp
A property for a given configuration can also be expressed
by a bigraph. A configuration described by a bigraph C
satisfies a property if the bigraph specifying the property
can be matched against C , exactly in the same way a redex
is matched against a bigraph to apply a reaction. Failure
of matching the bigraph representing a property against
C means, instead, that the property is not satisfied. The
utilisation of sites in the bigraph specifying the property
that is checked against C indicates that the portion of C that
matches a site does not affect the property. To specify prop-
erties, we can quantify over the sets of port names which
have been defined previously, e.g. for agents A. We can also
use the wildcard ’?’ is used to denote any port name. For
example, an undesired configuration corresponding to the
violation of the safe’s integrity is represented in Figure 3c
(and, equivalently, Formula 4a), indicating a visitor Agent
co-located with a Safe in a Room:

SR3a: Room?.(Safe
∣∣ Agenty .(V isitor | −0)

∣∣ −1) : ∀y ∈ A (4a)

The configuration of Figure 3c (Formula 4a) matches the
bigraph of Figure 3b. In the same fashion, we can specify an
acceptable configuration where a Safe is co-located with a
V isitor agent and a security Guard agent (Formula 5a):

SR3b: Safe
∣∣ Agent?.(V isitor | −0)

∣∣ Agent?.(Guard | −1) (5a)

Having defined how to specify a property for a config-
uration, we can now show how system requirements can
be specified. This is done by predicating on the branching
structure induced by reaction rules utilising branching time
temporal logic (CTL [18]). CTL includes two types of for-
mulae: state and path formulae. State formulae are defined
using the grammar specified in Formula 6, where ϕ is a
path formula. Propositions a are expressed as bigraphs.
Thus a state formula can be a bigraph configuration, the
special proposition true, the composition (∧) of two sub-
formulae, the negation (¬) of a formula, and a path CTL
formula prefixed by E (exists) or A (always) path quantifiers.
E predicates that ϕ must hold on at least one path starting
from the current state, while A asserts that ϕ must hold on
all paths starting from the current state.

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | Eϕ | Aϕ (6)

CTL path formulae are defined in Equation 7. A state CTL
formula Φ prefixed by the next operator (X), and two CTL
formulae Φ1 and Φ2 linked by the until operator (U) are valid
CTL path formulae.

ϕ ::= X Φ | Φ1U Φ2 (7)

Path formulae are interpreted over paths of the branch-
ing structure. For example, given a path π, the property
Φ1U Φ2 is true if there exists a state s in the path that satisfies
Φ2 and each state that precedes s on the path satisfies Φ2.
Additional operators may be derived from the basic ones –
AGφ ≡ ¬E true U(¬φ) expresses global satisfaction of φ on
all paths. Formulae 8a and 8b specify bigraphs SR1 and
SR2, respectively, formalising topological configurations
violating requirements SR1 and SR2.

SR1: Agentz .(Phonewlan | −0) ∧ ¬VMz ∧
Cloudletlan.(VM? | VM? | VM? | VM?) : ∀z ∈ A

SR2: Agentz .(Phonewlan.(Infoy) | −0) : ∀z, y ∈ A, z 6= y

(8a)

(8b)

For example, SR1 expresses the case in which
an agent named z is connected to the network
(Agentz.(Phonewlan | −0)), no VM is allocated to her
(¬VMz), and the cloudlet has reached its hardcoded max-
imum capacity (Cloudletlan.(VM? | VM? | VM? | VM?)).
In Formula 9, a global system requirement is described; in
every possible evolution of the initial configuration, require-
ments SR1-SR3 are never violated.

AG(¬SR1 ∧ ¬SR2 ∧ ¬(SR3a ∧ ¬SR3b)) (9)

5 SPECULATIVE THREAT ANALYSIS

Speculative threat analysis aims to identify potential viola-
tions of security requirements that can take place in future
evolutions of the CPSp. To support it, we need to explore the
state space of possible configurations that can be generated
from an initial topological configuration. In this section we
first illustrate how such a state space can be generated from

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

a BRS specification and formally represented as a state ma-
chine, where states represent configurations and transitions
represent actions occurring in the environment that generate
new configurations. We then discuss how the state space
can be explored to check whether future configurations that
violate the requirements can be reached.

Formally, the state machine we generate from the BRS
specification to enable automated reasoning is a (Doubly)
Labelled Transition System [18] (LTS) L, defined as a tuple
〈S, i,Λ, AP,→, L〉, where:

• S is a set of states describing configurations;
• i ∈ S is the initial state;
• Λ is a set of transition labels;
• AP is a set of atomic propositions;
• →⊆ S × Λ × S is a 3-adic relation of labelled tran-

sitions. If p, q ∈ S and α ∈ Λ, then (p, α, q) ∈→ is
written as p α→ q .

• L : S → 2AP is a function that labels each state with
the set of propositions that are true in that state.

A BRS specification can be interpreted as an equivalent LTS,
which models the evolution of topological configurations
caused by the occurrence of actions, modelled by reactions.
Intuitively, given an initial configuration specified by a
bigraph and a set of reaction rules, a target LTS can be
generated by mapping bigraph configurations to states and
the firing of reaction rules to transitions. The set of (AP)
propositions that label a state (e.g., p ∈ S) can be systemati-
cally generated by declaratively encoding the corresponding
bigraph configuration. LTS transition labels instead must
indicate a specific instantiation of a reaction rule. To under-
stand how new configurations are systematically generated
and how the corresponding LTS transitions are labelled,
consider an initial configuration specified by Formula 10,
which represents two Agents (a and b) outside Rooms (p
and k, respectively). The enter room reaction (Formula 3)
can be applied to this initial configuration leading to two
possible ones, describing either Agenta or Agentb entering
Roomp and Roomk, respectively.

Agenta.−0 | Roomp.(Agentb.−1 | Roomk.−2) (10)

When matching a reaction redex, the portion of a config-
uration that the redex matches indicates the specific bigraph
nodes that instantiated the redex, including their named
ports. Since ports are also used to indicate specific instances
of node controls, each match can be distinguished by the
ports of those nodes that matched the redex. Therefore,
the transitions that lead to the states labelled with new
configurations are labelled according to the reaction applied
(enter room) as well as the named ports of controls of the
initial configuration that instantiated the redex and appear
in the involved entities specification of the reaction (in this
case agents A and rooms R). Thus, one transition will refer
to {a, p} and the other to {b, k}, indicating that Agenta
entered Roomp or Agentb entered Roomk, respectively. For-
mulae 11a-11b show the labels as well as the corresponding
configurations generated. Matching can be automated by
configuring existing approaches for BRS (i.e. [19], [20]).

〈{a, p}, enter room〉
Roomp.(Agenta.−0 | Agentb.−1 | Roomk.−2)

〈{b, k}, enter room〉
Agenta.−0 | Roomp.(Roomk.(Agentb.−1 | −2))

(11a)

(11b)

As the combination of a reaction name and associated
ports identifying involved entities is unique since they
correspond to actions in the CPSp, the derived LTS is de-
terministic, i.e. for every state p and transition label α, there
is at most one state q such that p α→ q. Formulae 11a-11b
show such generated labels along with new configurations
that will be encoded in AP propositions in states.

The process of generating configurations and labelling
states and transitions must be iterated by exploring all
configurations. Whenever a reaction rule is applied to a con-
figuration, a new LTS state is generated if no state already
exists in the LTS that is labelled by the same configuration.
This can continue until no new state can be generated,
which corresponds to the case where the set of possible
configurations is finite.

An exhaustive generation and analysis of all LTS states
may not always be possible or may be inconvenient. The
state space generated by the BRS can in fact be infinite,
as for example in the case where allocation of new virtual
machines in the cloudlet (create vm) is always possible. In
other cases, although in theory the exhaustive exploration
of the state space leads to a finite number of states, perfor-
mance constraints may not allow generating or maintaining
the full LTS, as it can grow to a size that causes memory or
analysis performance issues. In addition, possible changes
to the CPSp and hence to the BRS model would require
performing again the entire (costly) LTS interpretation. Ex-
amples of such changes can be partitioning the main area
to create two separate rooms or extending the maximum
number of virtual machines that can be created beyond
the limit initially specified in the BRS. In all above cases,
state generation terminates when it reaches a predefined
lookahead horizon, which corresponds to the exhaustive ex-
ploration of a certain number of subsequent actions. Overall,
partial LTS generation aims to address scalability. Although
a high lookahead horizon (even up to achievement of full
LTS generation) allows in-depth exploration of the potential
evolution of the CPSp configurations, it incurs increased
space and time overhead. For this reason, it might be more
suitable for design time analysis and for operational envi-
ronments that rarely change.

Figure 5 shows an LTS fragment corresponding to the
evolution of the example presented in Section 2. State a
represents the initial configuration of Figure 1, where Alice
is in the wifi area and her mobile device is connected to the
wireless network. Eve is also located in the wifi area but
her mobile device is not connected. From this state, Eve can
connect to the network (〈{eve}, connect wifi〉), or perhaps
Alice can issue a new financial service request to the cloudlet
causing the creation of a new VM (〈{alice}, create vm〉).
In state b Alice can transmit her personal information to
one of her VMs hosted in the cloudlet (〈{alice}, tx〉) or
can dismiss one of the financial services requested causing
the deletion of one of the VMs allocated on her behalf
(〈{alice, vm2}, delete vm〉). In state a Mallory and Trudy
are in the corridor and, for example, Mallory can access the
safe room (〈{mallory, saferoom}, enter room〉).

To identify threats in future evolutions of the initial
configuration (i.e. initial state of L), we consider elementary
bigraphical predicates as atomic propositions in a CTL logic,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

which is interpreted over the states and branching paths of
the transition system. In both modes - full or partial BRS
interpretation - by ignoring transition labels and only con-
sidering state labels, the security requirements specification
is verified against the LTS, discovering possible states that
represent violations using standard CTL verification tech-
niques, for which on the fly checking is also possible [21]. In
Figure 5 for example, security requirement SR2 is violated
in state f since information transmitted by Alice can reach
Eve’s mobile device. Similarly, if Mallory leaves the corridor
and accesses the safe room, security requirement SR3 is vi-
olated (state c) since Mallory is co-located with the safe and
without being accompanied by the security guard (Trudy).

6 PLANNING

The CPS can be viewed as a system composed of two
entities: the environment, in which autonomous agents live
and events occur, and the controller — the object of our
design. This is a two-players game, where the environment
is an opponent that may lead to unsafe states where require-
ments are violated, while the controller tries to counteract by
devising a strategy able to prevent, circumvent, or mitigate
such violations. The goal of planning is to compute an
adaptation strategy to counteract potential threats, utilis-
ing violating states identified through analysis as well as
information recorded on the transitions labels of the LTS. If
the full LTS model is available, planning can be performed
at design time and then enacted at runtime. However, if
the LTS model is generated and analysed at runtime, as
discussed earlier, planning also has to be performed at
runtime, whenever possible threats are detected.

6.1 Adaptation Strategy Computation
To identify an adaptation strategy it is necessary to distin-
guish actions originating in the operational environment
from those originating in the controller. Environment ac-
tions can be generally partitioned in two classes: uncontrol-
lable (U) and controllable. Uncontrollable actions are those
whose occurrence is out of the system’s control. For exam-
ple, the action of a person entering a room is uncontrollable
if, for example, the door cannot be locked. Because such
actions may lead to security violations, we can only attempt
to mitigate their effect after they occur.

Controllable actions can be classified as enforceable (E),
preventable (P), or both (E+P). We assume that all environ-
ment actions are specified by stating their class (U, E, P,
or E+P). An action is enforceable by the controller if the
controller can enforce its execution. For example, action
〈{alice, vm2}, delete vm〉 can be enforced by instructing
the cloudlet to deallocate VM2. An action is preventable if its
occurrence can be prohibited by the controller. For example,
action 〈{alice}, create vm〉 can be prevented by the con-
troller by prohibiting VM allocations by Alice. We assume
that prohibiting or enforcing an action by the controller
takes precedence over any other action performed by the
environment and has an associated cost.

To express security policies, consider an LTS L =
〈S, i,Λ, AP,→, L〉 and V as the set of violating states found
during threat analysis. An adaptation strategy identifies
security policies to be enacted at specific LTS states rep-
resenting configurations that lead to security requirements

violations. We call these alarm states; a state is considered to
be an alarm state if it is not a violating state and it leads to a
violating state. Although our approach may consider alarm
states at any distance from violating states, for simplicity
herafter we assume a distance of one; that is, alarm states
are connected by a transition to a violating state.

Whenever an alarm state is entered, the controller enacts
a security policy by either (a) prohibiting actions that would
lead to a violating state, or (b) pre-emptively enforcing an
action that would correspond to exiting the alarm state and
entering a safe (non-violating) state, thus circumventing the
violation. If none of these security policies can be enacted,
the environment may bring the system into a violating state.
In such a case, the controller tries to enact a security policy
that mitigates the violation, by enforcing actions that can
bring the CPSp into a safe state. Because of the assumption
on the priority of action enforcement over other environ-
ment actions, the sequence of actions that brings the CPSp to
a safe state after entering a violating state can be considered
as an atomic compound action.

Each security policy is specified as a set of se-
curity rules according to the OrBAC model [22];
is prohibited(/is obliged)〈s, α, o〉 indicates that sub-
ject s is prohibited (resp. enforced) to perform action
α on object o. Observe that we can deconstruct every
transition label γ ∈ Λ to its constituents 〈s, α, o〉 where
α is the name of the action associated with γ, s is
the enacting entity, and o is the entity — if any —
upon which the action is performed. For example, label
〈{trudy, saferoom}, enter room, 〉} refers to subject trudy,
action enter room and object saferoom. Therefore, to sim-
plify notation in the following we will refer to OrBAC terms
is prohibited/ is obliged as operating on transition
labels (or sequences of labels). We distinguish between three
types of security policies; for each alarm state an optimal
security policy is chosen, if any. In the remainder of this
section we formalise and exemplify security policies.

A prevent security policy (P) aims at prohibiting the
occurence of all actions that would lead to violating states
from an alarm state (a). This policy can be selected if all
transitions (γ) exiting a and entering a violating state are of
class P (or E + P). Let P be the set of all transitions exiting
from a and entering a violating state. Formally, the prevent
security policy P associated with the alarm state is defined
as follows:

P(a) : {is prohibited(γ) | ∀s′ : a
γ→ s′, γ ∈ P, s′ ∈ V }

The cost of the prevent policy is the cumulative cost of
prohibiting the actions associated with the transitions in
P : cost(P) =

∑
(cost({γ | γ ∈ P}). Conventionally, we

assume P = ∅ and cost(P) = ∞ if the prevent security
policy cannot be enacted in the alarm state.

A circumvent security policy (C) aims at circumventing
violating states from an alarm state (a), by enforcing the
execution of an action entering a safe state, if one exists.
This policy can be devised by first computing the set of
all transitions of class E (or E + P) exiting a and entering
a safe state and then selecting among those the transition
γ —if one exists— whose enforcement has minimum cost.
The circumvent security policy C associated with the alarm

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

state a is defined as the set that contains only one element
is obliged(γ); formally:

C(a) : {is obliged(γ) | ∃s′ : a
γ→ s′, γ ∈ E, s′ /∈ V }

We define cost(C) as the cost of enforcing the occurence
of the action associated with γ. Conventionally, we assume
cost(C) =∞ if the circumvent security policy is not possible
(i.e. no transition γ exiting an alarm state and entering a safe
state can be found).

A mitigation security policy (M) aims at mitigating
security requirement violations determined by the execution
of an action that cannot be prevented by the controller.
Intuitively, as an alarm state is entered a mitigation strategy
first prohibits all actions corresponding to transitions that
lead to violating states and are labelled as P (or E + P), if
any. Then, if an uncontrollable action occurs that causes the
system entering a violating state, the execution of a sequence
of actions leading to a safe state is enforced. To formalise this
security policy it is first necessary to introduce the following
definitions. Given that si ∈ S, 0 ≤ i ≤ n and αi ∈ Λ, a finite
computation is defined as a finite composition of transitions:

s0
α1·..·αn−−−−−−→ sn =def s0

α1→ s1
α2→ ... sn−1

αn→ sn

The concatenation α1 · α2 · . . . · αn of labels (representing
actions) is called a trace originating from s0. The sequence
of states s1 · ... · sn−1 is called the sequence of traversed states.
State s0 is called the originating state of the sequence and
state sn is called the end state.

Let a be an alarm state and v a violating state reachable
from a by a transition a

γ→ v, where γ is a non preventable
action. Let EM be the set of all traces such that (1) v is the
originating state, (2) all transitions in the trace are labelled
by actions of class E (or E + P), (3) all traversed states
are violating states, and (4) the end state is safe (i.e., non-
violating). This set is called the set of enforceable mitigating
(EM) recovery traces associated with γ:

EMγ(v) : {σ | v σ→ vn, σ ∈ E+, v · ... · vn−1 ∈ V, vn /∈ V }

Among all EMγ traces, we can choose the sequence
of enforceable actions of minimum cost. This is performed
for all non preventable transitions from the alarm state to
violating states. In summary, a mitigating security policy M
is formally defined as a pair of sets 〈B,K〉. B is a set of
elements is prohibited(α), where α are all the transitions
exiting the alarm state and entering a violating state that
are preventable. K is a set of pairs {x, τ}, where τ is a
sequence of is obliged(β1) . . . is obliged(βn) elements
corresponding to the (minimum cost) EM trace (β1 · ... · βn)
preceded by transition γ whose corresponding action is x.
Formally, the second constituent of M associated with an
alarm state a is defined as follows:

K(a) : {〈γ, is obliged(EMγ(v))〉 | a γ→ v, v ∈ V }

If no enforceable mitigating recovery traces can be found for
each of the reachable violating states, no mitigating security
policy exists for an alarm state. The expected maximum cost
of M is the cumulative cost of B plus the maximum cost of
the sequences of enforceable actions τ associated with the
violating states that may be entered.

Consider the example previously presented where Mal-
lory is located in the corridor; a fragment of the LTS gener-
ated is shown in Fig. 5. The system is in alarm state (a) and a

requirement violation occurs if Mallory enters the safe room
(state c). Suppose that the system is unable to control access
to the safe room; it cannot forbid entering nor can it phys-
ically force Mallory to exit (U actions). However, it may be
able to instruct the security guard to move inside the room
to perform surveillance. In this case, a security policy will
include rule is obliged〈trudy, enter room, safe room〉.
The adaptation strategy computed also includes prohibiting
unencrypted transmissions when both Alice and Eve are
connected to the wireless network (states e and g), as this is a
preventable action and a circumvent or mitigation security
policy is not applicable. The resulting strategy consists of
the security policies to be enacted at alarm states e, g and a;
they are shown as annotated dotted transitions in Fig. 5.

<{eve}, tx>
<{alice}, create_vm>

i

<{eve}, create_vm>

<{alice}, tx_enc>

 <{eve}, connect_wifi>

...

<{mallory, saferoom}, enter_room>

 <{alice, vm2}, delete_vm>

<{alice}, tx>

<{alice}, create_vm>

<{trudy, saferoom}, enter_room>

<{eve}, tx_enc>

a

b

c

<{alice}, tx_enc>

 <{alice, vm3}, delete_vm>
...

e

g

f

h

d

<{mallory, saferoom}, exit_room>

...

...

...

...

X
Is_prohibited <alice, tx>

X
Is_prohibited <eve, tx>

Is_obliged <trudy, enter_room, saferoom>

U

U

P

P
E

Fig. 5: LTS fragment (violating states are in dark).
In some cases planning can be unsuccessful, i.e. plans for
violations in a given analysed alarm state do not exist and a
model redesign is needed. For example, if the guard trudy
is absent (recall that 〈{mallory, saferoom}, enter room〉 is
a U action), the CPSp will reach a violating state with no
mitigating security policy to be enacted.

6.2 Adaptation Strategy Enactment

Monitoring and Execution are responsible for enacting an
adaptation strategy at runtime through a controller mech-
anism [23]. During Monitoring, the events taking place
in the operational environment are detected. Such events
indicate the execution of actions represented as reaction
rules in the BRS, and correspond to LTS transitions, which is
maintained as a live model at runtime. Whenever an action
is performed, the live model is updated reflecting the new
state reached by the operational environment. If the new
state entered is an alarm state, the corresponding security
policy is enacted by Execution as a high-priority atomic
activity, as stated in the adaptation strategy. We assume
policies are enacted in a time interval that is less than the
change rate of the environment, which is in turn related to
its inertia; to satisfy this assumption we place the controller
as an intermediary between the CPSp and the system.

Prevent or circumvent security policies will be priori-
tized; if these do not exist, mitigation security policies are
enacted. If more that one option is viable, the one with
minimum cost is chosen. If none is available, then the
current design inevitably leads to a security requirement
violation and must be revised. Called upon an alarm state a,
Algorithm 1 checks if prevent or circumvent security poli-
cies have been identified. If such policies exist, the one with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

minimum cost is enacted, prohibiting or enforcing actions
as prescribed in the selected policy. Should none exist, the
controller enacts a mitigating security policy by prohibiting
actions prescribed in B, if any. Subsequently, it will block
until a new event is received from the environment. If
the received event represents the execution of an action x
leading to a violating state, the controller will enact the rules
enforcing the actions associated with sequence τ .

Algorithm 1 Monitoring & Execution
1: function EXEC(a,Pa,Ca,Ma)
2: if Pa 6= ∅ or Ca is defined then
3: if cost(Pa) ≤ cost(Ca) then ENACT(Pa)
4: else ENACT(Ca)
5: end if ; return
6: end if
7: Ma : 〈B,K〉 ; ENACT(B)
8: {x, τ} ∈ K: ‖block until x occurs in the environment‖
9: τ : 〈enforcement plan for x ∈ K〉 ; ENACT(τ)

10: end function

As we observed, in certain cases due to performance con-
straints, analysis is unable to perform an exhaustive explo-
ration of all possible configurations of the CPSp, and only
covers a maximum number of subsequent system states up
to a predefined lookahead horizon. In this case, as execution
progresses, it may be necessary to extend the explored por-
tion of the state space by updating the LTS model at runtime.
Subsequently, analysis for possible violations is performed
again, along with the security policy computation.

7 EVALUATION

To support our approach and assess its effectiveness, we
realised a prototype tool, implemented as a Python applica-
tion2. Its functionalities were showcased [24] by implement-
ing a test-bed instantiating a cyber-physical system similar
to the example presented in Section 2.

To use our approach and its corresponding prototype
tool, a security engineer has to specify the initial model of
the CPSp, its dynamics in the form of reaction rules and
security requirements using the bigraphical notation pre-
viously presented. Reaction rules corresponding to actions
that can be performed by agents in the CPS are classified
as P , E, E + P , or U . In the first three cases, the security
engineer also estimates the cost of prohibiting or enforcing
the action. In the example, actions include entering/exiting
rooms, connecting and disconnecting digital devices, trans-
mitting information, allocating VMs, as well as printing,
opening and closing documents. Additionally, switching on
and off appliances, such as lights and HVACs. The tool
verifies satisfaction of security requirements. If violating
states are found, it computes adaptation strategies for the
corresponding alarm states, and prompts for a redesign if
no security policies can be found. At runtime, adaptation
strategies are enacted when alarm states are entered. In
the rest of the section we assess the applicability of our
approach by extending the example of Section 2 to formalise
SR4 and consider three additional requirements (SR5-SR7),
that we have formulated following discussions with an
industrial partner working on access control. Finally, we
assess space and time overhead necessary to generate an
adaptation strategy and discuss results obtained.

2. The experimental prototype, specification and models of the
example used can be found at http://178.62.206.217.

7.1 Applicability and Overhead

Our evaluation scenarios, formulated after discussions with
an industrial partner, concern countering insider threats
in a CPSp. In the configuration presented in Section 2,
insider threats can be determined by agents exploiting their
access levels to cyber and physical assets. For instance, a
reasonable assumption is that connections to the network
can be established at will, or that agents can physically move
inside rooms in a trusted environment. Security controls
deployed to counter such threats can be very complex as
they must span both spaces, while not hindering overall
system functionality.

Recall that the BAS should never execute commands
originating from untrusted agents (SR4). In particular, SR4
states that the HVAC should be prevented from executing
new commands until untrusted devices (e.g., Phone) car-
ried by visitors are disconnected from the network gateway
(Formula 12a). In a first scenario, we assume that the trans-
mission of a potentially malicious packet (PktHvac) from
a connected device cannot be prohibited; indeed checking
the packet’s source might not be satisfactory as this can
be spoofed by an attacker. Therefore, the gateway may be
enforced to conditionally discard packets received, until no
untrusted device is connected to the network.

SR4: AG(Agentx.(V isitor | Phonewlan)⇒
A (¬Gateway.PktHvac U Agentx.(V isitor | Phone))) : ∀x ∈ A

(12a)

In the second scenario, we assume that an employee is
working on a confidential document (Doc) on desktop D1
(Figure 1). To guarantee the confidentiality of this document
two security requirements must be satisfied (SR5 and SR6).

SR5: AG(¬((Agentz .(V isitor | −0)
∣∣ Doc ∣∣ −1)

∧ ¬(Agenty .(Employee | −3)
∣∣ Doc ∣∣ −4))) : ∀z, y ∈ A, z 6= y

SR6: AG(Prnt.Doc⇒ A¬(Agentz .(V isitor |−1)
∣∣ Prnt.−3) U

(Agenty .(Employee |−2)
∣∣ Prnt.−4

∣∣ Doc)) : ∀z, y ∈ A, z 6= y

(13a)

(13b)

To prevent a malicious individual from exploiting his
permission to access Office 1 to see the document, SR5 states
that Doc must not be opened on D1 while another Agent
with role V isitor is in the office and an Employee is not
present. Note that when the document is opened, it is no
longer contained in a computer but it is considered at the
same hierarchical level of the agents and objects in a room.
When the document is opened, two security policies may be
enacted: i) prohibit access to the room, or when this is not
possible, ii) enforce closing the document when a visitor
enters the room. Similarly, SR6 states that the document
cannot be printed until an Employee is in the printer room.
When the document is spooled to the printer (Prnt) through
the network, the system chooses between two kinds of
security policies: i) prohibiting document printing until an
Employee is in the printer room or, ii) prohibiting V isitor
agents from entering the printer room until an Employee is
inside to collect the printout.

Similar to requirement SR3, consider a requirement re-
garding the integrity of the assets placed in the server room,
such as the cloudlet (SR7). To guarantee their integrity, it is
necessary to ensure availability of the surveillance facilities
in the server room; this prevents an agent from physically
tampering with the equipment unnoticed. In particular,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

while an agent is in the server room alone, the CCTV
should be functioning and the light L1 should be switched
on, or alternatively a security guard should already be in-
side. To satisfy this requirement, access may be prohibited to
the server room if the CCTV or the light are not functioning.
If the CCTV or the light stop working while an agent is
already inside the room, a security guard is obliged to enter.

SR7:AG(¬(¬(CCTV ∧ L1) ∧ (Roomsrvroom.(Agent?.(V isitor | −0)∣∣ −1) ∧ ¬Roomsrvroom.(Agent?.(Guard | −2)
∣∣ −3))) (14a)

We conducted our analysis on an Intel i7 (3.5GHz)
processor; space and time overhead of the speculative
analysis and planning of the configuration presented are
shown in Table 1. We compare the overhead determined by
analysing (identifying violations) and planning (computing
adaptation strategies) for an LTS of increasing lookahead
horizons (e.g., 2, 4 and 6) with the one determined by
full interpretation. Results of Table 1 do not include LTS
generation. The execution time of analysis and planning
increase proportionally with the space overhead.

States # Trans Analysis # VStates Planning
Time Time

L 2 93 171 3 sec 31 0.1 sec
L 4 1026 3703 22 sec 506 0.6 sec
L 6 4807 24002 198 sec 2816 25 sec

Full 24001 195613 ∼8 min 18008 ∼18 min

TABLE 1: Space and time overhead of Analysis & Planning.

7.2 Discussion
We have demonstrated that BRS are a suitable formalism
to represent the topological properties of CPSp and reason
about their interplay. Moreover, by utilising CTL properties
over bigraph configurations as propositions, we were able to
encode and verify even complex security requirements (e.g.,
SR4-SR7) predicating on execution paths. Guaranteeing the
satisfaction of such requirements allows us to enforce fine
grained behaviour, such as conditional access depending on
past actions (e.g., for authentication purposes).

Our results highlight advantages and disadvantages of
generating the full evolution of the BRS model compared
to bounding analysis to a specific lookahead horizon. Al-
though the time to perform analysis when the state space
is not explored fully is lower (especially for a small looka-
head), the adaptation strategy must be regenerated fre-
quently at runtime. Instead, although the time to perform
the analysis when the full model is adopted is higher, a new
adaptation strategy will be regenerated sporadically, only
when an exogenous change takes place, or at design time.

The reference implementation used is an experimental,
unoptimized prototype; state of the art tooling would re-
duce overhead by several orders of magnitude. Moreover,
strategies reducing the number of reaction rules considered
during LTS generation could be investigated further. For
instance, correlating undesired configurations with domain-
specific information such as existing access control policies,
would allow us to ignore states violating access control poli-
cies during analysis. Another possibility is ignoring reaction
rules in the BRS model that do not have any impact on
the satisfaction of the security requirements. However, our
preliminary results do demonstrate the applicability of the
approach in its context, and encourage further investigation.

As with any model-based approach, guarantees of com-
pleteness are in the scope of the model specified by the
security engineer. Our approach does not take into account
the inertia of the system, i.e. the time necessary to execute
an action, which is especially relevant to physical systems.
To address this limitation, in future work we will encode
metric temporal characteristics into the underlying logical
framework used. This will enable the selection of a security
policy also depending on the time necessary to enact it. In
this paper security policies are assumed to be enacted as an
atomic action, occurring before the environment can change
spontaneously. Another assumption made in our approach
is that events observed correspond to the correct actions
taking place in the CPSp; this is obviously a limitation.

8 RELATED WORK

Our work touches a number of related areas and makes
a novel contribution in software engineering of adaptive
security for CPS. First we review existing work that adopts
BRS to model and reason about CPS. Second, we discuss
related approaches that use cyber-physical test-beds and
formal methods to engineer secure CPS. Finally, we compare
our work with existing adaptive security approaches.

8.1 BRS for Modelling Cyber-Physical Spaces
The adoption of BRS for modelling has been considered
extensively in literature. Walton et al. [25] focused on on
BRS as a formal model to represent indoor spaces and
mobility of objects and agents in those spaces; this work
aims at reasoning about path-based navigation tasks. Our
group [26] has used BRS to provide formal semantics to
Building Information Models, a standard for modelling
physical spaces, in order to support verification of prop-
erties of smart buildings. In contrast, in this paper we use
BRS to select security policies, where hierarchical structures
are considered along with linking between CPSp entities.

BiAgents [27] are a formalism which encompasses bi-
graphs for modelling the physical space and abstract alge-
braic structures for the cyber space. Unlike our approach,
which explicitly aims to model the interplay between cyber
and physical spaces, a BiAgents model clearly separates
them, and their interaction is fairly limited. BiAgents have
been specifically used to identify strategies to prevent ill-
defined concurrency behaviours that can emerge from cyber
agents operating in shared physical structures. However,
they are not suitable for identifying security breaches that
can arise from the interplay between cyber and physical
spaces. BRS with sharing [19] are used by Calder et al. [28]
for modelling and reasoning in network topologies and
management systems. Similarly to our approach, BRS are
used to perform analysis at runtime in order to verify access
control policies when network events occur. However, in
this work BRS have not been used to model and reason
on the interplay of physical and cyber spaces, and analysis
results are not used to select security policies to counter
identified violations. Benford et al. [17] use BRS to model
socio-technical and human behaviour aspects alongside
system behaviour and reason about their interplay. BRS
are extended with probabilistic events, analysis of reaction
rules (e.g., for verifying invariants) and a pattern system.
Similarly to our work, bigraphs are used as propositions

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

in a logic and variables express reaction rules over multi-
ple bigraph names. However, although we utilise similar
modelling principles of the BRS formalism, we focus on the
realisation of a complete methodology and framework that
ranges from modelling, analysis and automated, adaptive
generation of security policies.

The cornerstone underlying BRS (and thus also enabling
reasoning on CPSp) is the matching problem [9], i.e. condi-
tionally associating bigraphs and generating new instances.
Apart from the closely related fields of graph transforma-
tion, term rewriting or term graph rewriting, we refer to ex-
isting work that has specifically approached bigraph match-
ing. Several approaches for operating on various forms of
bigraphs exist and can in principle be configured for the
matching constituent of the approach outlined in Section 5.
A SAT based algorithm for the matching problem [29], and
bigraphs with sharing where the place graph can be a DAG
are developed in [19]; a complete bigraphical framework
is realized. BPLTool [30] enables reasoning on BRS systems
with binding, and has an emphasis on implementation cor-
rectness with a matching system based on formally defined
inference rules [31]. A similar approach has been followed
in DBtk [32], a tool for reasoning on directed bigraphs, a
form of bigraphs with directed edges. However, this work
does not address checking properties of bigraphical models.
SBAM [33] implements a variant of stochastic bigraphs, pure
BRS equipped with stochastic semantics. The form of non-
binding bigraphs that we use in this paper is similar, in
that all controls are considered active, and there are no
inner names. BigMC [20] is a model checker for bigraphs;
from a description of a model, it finds all possible future
configurations of this model while checking a specification
expressed as a state matching property against them. The
term language we use draws heavily from BigMC’s. In our
realization we perform checking of CTL properties whose
propositions are bigraphical predicates, and support speci-
fications with variables to describe reactions and properties.

8.2 Secure Cyber-Physical Systems

Some research in security of CPS has focused on assessing
the effects of cyber threats against both the physical and the
cyber dimension of networked critical infrastructures [34],
[35] by using existing cyber-physical test-beds. These ap-
proaches focused on modelling dynamical systems such
as sensors or actuators signals, for which timing concerns
are fundamental. Our work instead aims to identify threats
determined by changes of the cyber-physical space. and can
be directly applied in practice in all cases where time needed
to enact security policies is negligible with respect to timing
of events occurring in the physical world. This is the case
in access control in smart buildings, where actions such as
locking doors, controlling network connections or access to
services can be performed in a negligible time.

Similarly to our work, other approaches are grounded in
formal methods to identify violations of security require-
ments in CPS. Akella et al. [36] propose an approach to
detect confidentiality breaches determined by the compo-
sition of physical systems with cyber components. Sensitive
information about a physical component can be inferred
through behavior observation about related cyber compo-
nents. A composite model of the CPS is formalised using the

Security Process Algebra [37] and confidentiality properties
are expressed as bisimulation-based non-deducibility – low
level events observations from physical elements should not
be affected when these are composed with cyber compo-
nents. Automated detection of confidentiality breaches is
performed by using the CoPS model checker [38]. A threat
model for CPS [39] has been proposed to incorporate typical
characteristics of physical systems, such as survivability
to abnormal behavior and the possibility to recover after
critically vulnerable states are reached. A CPS is modeled as
a finite, hybrid timed automaton with faults. An adversary
can exploit a certain set of transitions related to system
vulnerable states. The framework is adopted to identify
transitions whose execution must be forbidden and to pro-
vide formal proofs of protocols. Dimkov et al. [40] discuss
insider threats that span physical, cyber and social domains.
They build upon KLAIM [41] dialects for agent interaction
and mobility to formalise insider threats and provide a
framework to identify attack scenarios. However, none of
the aforementioned approaches can automatically suggest
security policies to counter security requirements violations.
Furthermore, as far as we are aware, model checking tech-
niques have not been used at runtime to discover security
breaches determined by CPSp topological changes.

Extensions to the role-based access control (RBAC)
model have been considered to include topological features
into policy decisions. In particular, Prox-RBAC [42] pro-
poses a policy language and an enforcement architecture to
specify and enforce constraints according to agents physical
proximity. This view of proximity originally restricted to
spatial concerns was extended [43] to include characteristics
belonging to the cyber and social spaces such as agents at-
tributes (e.g., similar roles), social networks (e.g., short num-
ber of hops in a social network), communication channels,
and time. Although a richer notion of proximity, including
agents’ attributes, social networks and time is relevant and
can be incorporated in our approach, Prox-RBAC does not
allow security analysts to define policies depending on ad-
ditional topological relationships such as containment and
reachability. Furthermore, it does not allow specifying com-
plex temporal constraints describing potential evolutions.
Finally, in [43] constraint satisfaction is checked when the
permission to perform an action is requested and while an
agent assumes an active role; this does not allow an optimal
adaptation strategy to be selected in advance.

8.3 Adaptive Security and Enforcement

As far as we are aware, existing research on adaptive
security [44] has not focused on CPS, which can be tar-
geted by multi-vector attacks exploiting vulnerabilities of
both cyber and physical components. Salehie et al. [45]
propose a requirements-driven approach for dynamically
re-estimating the risk of harm, depending on assets and
context changes. Security threats, attacks and vulnerabili-
ties are modeled in advance, and predetermined security
controls are adjusted at runtime depending on the varying
risk of harm. Architecture-based self-protection [46] aims
to detect and mitigate security threats based on an ar-
chitectural representation of the software that is kept in
sync with the running system. The model provides infor-
mation related to the impact of security breaches on the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

system and allows engineering security controls by apply-
ing specific architectural design patterns. However, these
approaches [45], [46] are based on the assumptions that
security controls are predetermined and vulnerabilities are
determined by individual system components. In previous
preliminary work [7], we investigated the use of Ambient
Calculus [8] to model the topology of the physical space
and perform speculative threat analysis to reason about
the impact that changes in the topology of the physical
space can have on the satisfaction of security requirements.
We decided, however, to abandon this formalism because
it does not provide adequate support for modelling and
reasoning about the interplay between cyber and physical
aspects. The properties that correspond to the requirements
in our approach are encoded as system safety properties,
enjoying results on enforcement mechanisms pioneered
by [23]. Notions of controllable and observable environment
actions are formally treated in [47], where decidability of
enforceability is studied. We further distinguish controllable
environment actions in enforceable and preventable. Similar
classifications of actions are common in other areas such
as supervisory control theory (e.g. [48]). In practice, en-
forcement of the adaptive security policies generated in this
paper can be achieved by configuring edit automata [49].

9 CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach for engineering
topology aware adaptive security for cyber-physical sys-
tems, focusing on the interplay between cyber and physical
spaces characterising the operational environment. We used
a form of BRS to represent cyber-physical spaces and their
dynamics, and expressed security requirements as tempo-
ral properties over bigraphical predicates. We performed
speculative threat analysis in order to reason about the
consequences of the evolution of the environment on re-
quirements satisfaction. To achieve this aim, we interpret the
BRS over an LTS representing the evolution of the configura-
tion of the CPSp. Subsequently, through model checking we
identify all possible states in the evolution of the operational
environment where security requirements are violated. The
results of analysis are used during planning to generate an
adaptation strategy consisting of security policies that the
system can take to prevent, circumvent or mitigate viola-
tions. When, due to performance concerns, analysis can only
be performed up to a maximum number of future states,
validity of the adaptation strategy is bound to a looka-
head horizon. In this case, we utilise a heuristic method
to regenerate and enact the adaptation strategy at runtime.
Our evaluation demonstrates that our approach can identify
and counteract security requirements violations arising from
changes in both constituents of a CPSp. Moreover, BRS are a
suitable formalism to express such topological relationships.
To evaluate our approach we automated the analysis and
planning activities. We assessed the applicability of our
approach and its overhead by using a case study formulated
following discussions with an industrial partner concerned
with countering insider threats. Our results are encouraging
and provide evidence of the feasibility of the approach.

We have identified and are pursuing a number of
promising avenues for further investigation. We plan to
integrate our approach with more advanced techniques

dealing with partial observation of environment events and
decentralization of the enforcement controller. Additionally,
we will relax the atomicity assumptions made regarding
security policy enactment; in particular, we will encode
metric temporal characteristics into the underlying logical
framework used to deal with enforcement issues. This will
also make our approach applicable to a wider set of physical
environments that may exhibit inertia and will allow us to
select an adaptative security policy plan that also depends
on enactment timings. We are also considering incremental
verification techniques to handle exogenous changes with-
out invalidating previous analysis outcomes.

ACKNOWLEDGEMENTS

This work was partially supported by ERC Advanced
Grants no. 227977 (SMScom) and no. 291652 (ASAP), and
SFI grants 10/CE/I1855 and 13/RC/2094.

REFERENCES

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges,” EECS
Department, University of California, Berkeley, Tech. Rep., 2008.

[2] J. Depoy, J. Phelan, P. Sholander, B. Smith, G. Varnado, and
G. Wyss, “Risk Assessment for Physical and Cyber Attacks on
Critical Infrastructures,” in Proc. of the Military Communications
Conference, 2005, pp. 1961–1969.

[3] F. den Braber, I. Hogganvik, M. Lund, K. Stølen, and F. Vraalsen,
“Model-Based Security Analysis in Seven Steps-A Guided Tour to
the CORAS Method,” BT Technology Journal, vol. 25, no. 1, 2007.

[4] ISO/IEC-27001/27005, “Information Technology. Security Tech-
niques. (27001) Information Security Management Systems;
(27005) Information Security Risk Management,” 2008.

[5] A. van Cleeff, W. Pieters, R. Wieringa, and F. van Tiel, “Inte-
grated Assessment and Mitigation of Physical and Digital Security
Threats: Case Studies on Virtualization,” Inf. Sec. Techn. Report,
vol. 16, no. 3-4, pp. 142–149, 2011.

[6] L. Pasquale, C. Ghezzi, C. Menghi, C. Tsigkanos, and B. Nuseibeh,
“Topology Aware Adaptive Security,” in Proc. of the 9th Int. Symp.
on Software Engineering for Adaptive and Self-Managing Systems,
2014, pp. 43–48.

[7] C. Tsigkanos, L. Pasquale, C. Menghi, C. Ghezzi, and B. Nuseibeh,
“Engineering Topology Aware Adaptive Security: Preventing Re-
quirements Violations at Runtime,” in Proc. of the 22nd Int. Require-
ments Engineering Conf., 2014, pp. 203–212.

[8] L. Cardelli and A. D. Gordon, “Mobile Ambients,” in Proc. of the
1st Int. Conf. on Foundations of Software Science and Computation
Structure, 1998, pp. 140–155.

[9] R. Milner, The Space and Motion of Communicating Agents. Cam-
bridge University Press, 2009.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case
for VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[11] C. P. Pfleeger and S. L. Pfleeger, Security in Computing. Prentice
Hall Professional, 2003.

[12] A. van Lamsweerde, “Elaborating security requirements by con-
struction of intentional anti-models,” in Proc. of the 26th Intl.
Conference on Software Engineering, 2004, pp. 148–157.

[13] H. Merz, T. Hansemann, and C. Hübner, Building Automation:
Communication Systems with EIB/KNX, LON and BACnet. Springer
Science & Business Media, 2009.

[14] W. Granzer, F. Praus, and W. Kastner, “Security in Building Au-
tomation Systems,” IEEE Trans. on Industrial Electronics, vol. 57,
no. 11, pp. 3622–3630, 2010.

[15] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Com-
puting,” IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[16] R. Milner, Communicating and Mobile Systems: The Pi Calculus.
Cambridge University Press, 1999.

[17] S. Benford, M. Calder, T. Rodden, and M. Sevegnani, “On lions,
impala, and bigraphs: Modelling interactions in physical/virtual
spaces,” ACM Trans. Comput.-Hum. Interact., vol. 23, no. 2, pp. 9:1–
9:56, May 2016.

[18] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
press, 1999.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

[19] M. Sevegnani and M. Calder, “Bigraphs with Sharing,” Theor.
Comput. Sci., vol. 577, pp. 43–73, 2015.

[20] G. Perrone, S. Debois, and T. T. Hildebrandt, “A Verification
Environment for Bigraphs,” Innovations in Systems and Software
Engineering, vol. 9, no. 2, pp. 95–104, 2013.

[21] G. Bhat, R. Cleaveland, and O. Grumberg, “Efficient On-the-Fly
Model Checking for CTL,” in Proc. of the 10th Symposium on Logic
in Computer Science, 1995, pp. 388–397.

[22] A. A. E. Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin, “Organiza-
tion Based Access Control,” in Proceedings of the 4th International
Workshop on Policies for Distributed Systems and Networks, 2003, pp.
120–131.

[23] F. B. Schneider, “Enforceable Security Policies,” ACM Transactions
on Information and System Security, vol. 3, no. 1, pp. 30–50, 2000.

[24] C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh, “Ariadne:
Topology aware adaptive security for cyber-physical systems,”
in 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2, 2015.

[25] L. A. Walton and M. Worboys, “A qualitative bigraph model for
indoor space,” in Geographic Information Science. Springer, 2012.

[26] C. Tsigkanos, T. Kehrer, C. Ghezzi, L. Pasquale, and B. Nuseibeh,
“Adding static and dynamic semantics to building information
models,” in Proceedings of the 2nd International Workshop on Software
Engineering for Smart Cyber-Physical Systems. ACM, 2016, pp. 1–7.

[27] E. Pereira, C. Kirsch, and R. Sengupta, “BiAgents–A Bigraphical
Agent Model for Structure-aware Computation,” Cyber-Physical
Cloud Computing Working Papers, CPCC Berkeley, 2012.

[28] M. Calder, A. Koliousis, M. Sevegnani, and J. Sventek, “Real-
time verification of wireless home networks using bigraphs with
sharing,” Science of Computer Programming, vol. 80, 2014.

[29] M. Sevegnani, C. Unsworth, and M. Calder, “A SAT Based Al-
gorithm for the Matching Problem in Bigraphs with Sharing,”
University of Glasgow, Tech. Rep., 2010.

[30] E. Højsgaard and A. J. Glenstrup, “The BPL Tool: A Tool for
Experimenting with Bigraphical Reactive Systems,” Bigraphical
Languages and their Simulation, p. 85, 2011.

[31] L. Birkedal, T. C. Damgaard, A. J. Glenstrup, and R. Milner,
“Matching of Bigraphs,” Electronic Notes in Theoretical Computer
Science, vol. 175, no. 4, pp. 3–19, 2007.

[32] G. Bacci, D. Grohmann, and M. Miculan, “DBtk: A Toolkit for
Directed Bigraphs,” in Algebra and Coalgebra in Computer Science.
Springer, 2009, pp. 413–422.

[33] J. Krivine, R. Milner, and A. Troina, “Stochastic bigraphs,” Elec-
tronic Notes in Theoretical Computer Science, vol. 218, 2008.

[34] M. Krotofil and A. A. Cárdenas, “Resilience of Process Control
Systems to Cyber-Physical Attacks,” in Proc. of the 18th Nordic
Conference on Secure IT Systems, 2013, pp. 166–182.

[35] S. Sridhar and M. Govindarasu, “Model-Based Attack Detection
and Mitigation for Automatic Generation Control,” IEEE Trans. on
Smart Grid, vol. 5, no. 2, pp. 580–591, 2014.

[36] R. Akella, H. Tang, and B. M. McMillin, “Analysis of Information
Flow Security in CyberPhysical Systems,” Int. J. of Critical Infras-
tructure Protection, vol. 3, no. 34, pp. 157 – 173, 2010.

[37] R. Focardi and R. Gorrieri, “The Compositional Security Checker:
A Tool for the Verification of Information Flow Security Proper-
ties,” IEEE Trans. Software Eng., vol. 23, no. 9, pp. 550–571, 1997.

[38] C. Piazza, E. Pivato, and S. Rossi, “CoPS - Checker of Persistent
Security,” in Proc. of the 10th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, 2004, pp. 144–152.

[39] M. Burmester, E. Magkos, and V. Chrissikopoulos, “Modeling
Security in Cyber-Physical Systems,” Int. J. of Critical Infrastructure
Protection, vol. 5, no. 34, pp. 118 – 126, 2012.

[40] T. Dimkov, W. Pieters, and P. Hartel, “Portunes: Representing At-
tack Scenarios Spanning Through the Physical, Digital and Social
Domain,” in Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security, 2011, pp. 112–129.

[41] R. De Nicola, G. L. Ferrari, and R. Pugliese, “KLAIM: A Kernel
Language for Agents Interaction and Mobility,” IEEE Trans. on
Software Engineering, vol. 24, no. 5, pp. 315–330, 1998.

[42] M. S. Kirkpatrick, M. L. Damiani, and E. Bertino, “Prox-RBAC: a
Proximity-Based Spatially Aware RBAC,” in Proc. of the 19th Int.
Conference on Advances in Geographic Information Systems, 2011, pp.
339–348.

[43] A. Gupta, M. S. Kirkpatrick, and E. Bertino, “A Formal Proximity
Model for RBAC Systems,” Computers & Security, vol. 41, pp. 52–
67, 2014.

[44] E. Yuan, N. Esfahani, and S. Malek, “A Systematic Survey of
Self-Protecting Software Systems,” ACM Trans. on Autonomous and
Adaptive Systems, vol. 8, no. 4, p. 17, 2014.

[45] M. Salehie, L. Pasquale, I. Omoronyia, R. Ali, and B. Nuseibeh,
“Requirements-Driven Adaptive Security: Protecting Variable As-
sets at Runtime,” in Proc. of the 20th Int. Requirements Engineering
Conf., 2012, pp. 111–120.

[46] E. Yuan, S. Malek, B. R. Schmerl, D. Garlan, and J. Gennari,
“Architecture-Based Self-Protecting Software Systems,” in Proc. of
the 9th Int. Conf. on Quality of Software Architectures, 2013, pp. 33–42.

[47] D. Basin, V. Jugé, F. Klaedtke, and E. Zălinescu, “Enforceable
security policies revisited,” ACM Transactions on Information and
System Security (TISSEC), vol. 16, no. 1, p. 3, 2013.

[48] P. J. Ramadge and W. M. Wonham, “Supervisory control of a
class of discrete event processes,” SIAM journal on control and
optimization, vol. 25, no. 1, pp. 206–230, 1987.

[49] J. Ligatti, L. Bauer, and D. Walker, “Edit Automata: Enforcement
Mechanisms for Run-Time Security Policies,” International Journal
of Information Security, vol. 4, no. 1-2, pp. 2–16, 2005.

Christos Tsigkanos received a BSc degree in
computer science from University of Athens and
a MSc degree in software engineering from Uni-
versity of Amsterdam. He is working towards
his PhD in adaptive security under prof. Carlo
Ghezzi at Politecnico di Milano. His research
interests lie in the intersection of software engi-
neering and security, and include self-adaptive
systems, cyber-physical systems, requirements
engineering and formal verification.

Liliana Pasquale is a research fellow at Lero
- the Irish Software Research Centre (Ireland)
since April 2015. She received her PhD in In-
formation and Communication Technology from
Politecnico di Milano in 2011. Her research inter-
ests are in requirements engineering and adap-
tive systems, with particular focus on security,
privacy and digital forensics.

Carlo Ghezzi is Professor of Software Engineer-
ing in Politecnico di Milano. He is an ACM Fel-
low, an IEEE Fellow, a member of the European
Academy of Sciences and the Italian Academy
of Sciences. He received the ACM SIGSOFT
Outstanding Research Award and the Distin-
guished Service Award. He is the current Pres-
ident of Informatics Europe. He has been the
Editor-in-Chief of the ACM Trans. on Software
Engineering and Methodology and is currently
an Associate Editor of the Communications of

the ACM, IEEE Trans. on Software Engineering, Science of Computer
Programming, Computing, and Service Oriented Computing and Appli-
cations. His research has been mostly focusing on different aspects of
software engineering. He co-authored over 200 papers and 8 books. He
coordinated several national and international research projects.

Bashar Nuseibeh is Professor of Computing
at The Open University (Director of Research
2001-2008) and Professor of Software Engineer-
ing at Lero - the Irish Software Research Cen-
tre (Chief Scientist 2009-2012). He is a Visit-
ing Professor at Imperial College London and
the National Institute of Informatics, Japan. His
research interests lie at the intersection of re-
quirements engineering, adaptive systems, and
security and privacy. He served as Editor-in-
Chief of IEEE Trans. on Software Engineering

and the Automated Software Engineering Journal. He received an ICSE
Most Influential Paper Award, a Philip Leverhulme Prize, an Automated
Software Engineering Fellowship, a Senior Research Fellowship of the
Royal Academy of Engineering, and an ACM SIGSOFT Distinguished
Service Award. He currently holds a Royal Society-Wolfson Merit Award
and an ERC Advanced Grant on Adaptive Security and Privacy.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2016.2599880

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

