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Abstract. Engineering of flight software architectures for nanosatel-
lite missions presents significant challenges due to constrained on-board
computational resources, stringent reliability requirements and complex,
mission-specific operational demands. Despite the advancements of the
New Space era, designs and architectural documentation are seldomly
available, largely due to intellectual property restrictions. To address this
gap, this paper illustrates the flight software architecture for a nanosatel-
lite mission as per the 4+1 view model. By deconstructing the on-board
software system into its physical, logical, development, process and sce-
nario views, we offer an in-depth analysis of the architectural decisions,
trade-offs, and design rationales that guided development. The design
presented extends beyond typical reliability and safety to emphasize
deployability, integrability, modifiability, and testability design drivers.
This experience report intends to advocate rigorous software architecture
principles in software engineering for space software, by sharing insights
and providing detailed architectural documentation with the overall goal
of advancing a novel research agenda within the community.
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1 Introduction

The engineering of flight software (FSW) architectures for nanosatellite mis-
sions involves a constellation of complex challenges inherent to the domain of
on-board space systems. Constraints imposed by limited on-board computational
resources, the imperative for high reliability in the unforgiving space environ-
ment, and intricate operational demands of each mission require sophisticated
and well thought-out architectural designs —while software size and complexity
are further typical constraints [6]. The body of knowledge spanning architec-
ture, requirements, specification and implementation of software on spacecraft
and their payloads [9] is vast and such engineering know-how has long been a
core component of specialized teams within institutional space organizations.
Recently, the emergence of low-cost, powerful on-board computers on contem-
porary small-scale flight- and space- craft [32], has led to wide availability of
platforms and lowered the barrier to entry, often referred to as New Space [22].
However, designs and architectural documentation are often not available to
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the research community due to intellectual property restrictions that inhibit the
dissemination of detailed design information across the aerospace industry.

We seek to address this gap by providing a comprehensive perspective of the
FSW of the ERMIS3 mission from a software architecture lens and in partic-
ular through Kruchten’s 4+1 architectural view model [19]. The ERMIS3 mis-
sion, a component of Greece’s inaugural nanosatellite constellation, is designed
to demonstrate high-throughput laser optical downlinking achieving data rates
of up to 1 Gbps and hyperspectral imaging for Earth observation. By decon-
structing the on-board software system into its Physical, Logical, Development,
Process, and Scenario views, we report an in-depth analysis of our experience;
namely the architectural decisions, trade-offs, and design rationale that inform
the development process of the flight software architecture at hand.

Naturally, FSW engineering for a space mission is tied to (and begins with
—also due to the waterfall process typical in the domain) particular mission
requirements. However, broad design goals do apply and guide the architecture
development, reliability and safety being at the forefront due to the criticality
of the space domain. As such, the design we present is crafted to satisfy certain
design goals beyond mission requirements— we select in particular deployability,
integrability, modifiability, and testability as design drivers. By leveraging the
principle of modularity and sticking to standardized interfaces, the FSW facili-
tates efficient deployment and seamless integration with the various subsystems
on-board (such as sensors, payloads, etc). We advocate loose coupling and high
cohesion within the architecture to support straightforward code modifications,
accommodating often evolving mission objectives with minimal impact on exist-
ing components. Comprehensive testability is achieved through embedded test-
ing interfaces, utilization of automated build and simulation environments, and
adherence to rigorous verification protocols, something typical in the aerospace
domain. We work on top of F Prime (F’) [2], a cutting-edge open-source frame-
work developed by the Jet Propulsion Laboratory. Our choice is motivated by
its notable real-world applications [3, 18], and rigorous application of software
engineering practices (e.g., components with typed port connections, and object-
oriented design). Supplementary artifacts consist of further documentation of the
software architecture as open-source assets.

In this paper, we seek to bring the attention of the community to space
software, by presenting detailed architectural documentation. Specifically, our
contributions are as follows:

– We advocate a rigorous approach for applying software architecture princi-
ples to the design of a nanosatellite software architecture;

– We report in-depth our experience including architectural decisions, trade-
offs, and rationale that informed the design;

– We present detailed architectural documentation of the software design, fol-
lowing Kruchten’s 4+1 view model.

The rest of this paper is structured as follows. Section 2 outlines the design
drivers for the FSW architecture. Section 3 describes the architectural design per
the 4+1 view model, while Sec. 4 elaborates on design rationale and trade-offs
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including in particular a reflection on the design drivers informing the architec-
ture. Related work is considered in Sec. 5, and Sec. 6 concludes the paper along
with an outlook to a research agenda.

2 Flight Software Design Drivers

Naturally, numerous software requirements are identified as part of any space
mission, in typically extensive requirements processes involving high stakeholder
engagement. In the following, we maintain a birds-eye view —excluding mis-
sion particularities— and distill design goals that drive the architectural design.
Those comprise essentially quality attributes, functionality and constraints, and
were identified with the following methodological steps:

1. Key quality attributes were identified through consultations with mission
partners, hardware-providers and stakeholders.

2. An iterative feedback loop was used to refine these to design drivers, ensuring
alignment with institutional oversight and mission partners.

3. The 4+1 View Model was selected for representation due to its clarity and
effectiveness in supporting both technical validation and team on-boarding.

4. The flight software system was deconstructed and mapped to the views to
clearly represent structure and behavior, and used for validating the design.

The methodological steps above yielded design drivers (as architectural goals),
selected to the stringent and particular operational demands of our working
context —the FSW must not only function correctly but also adapt to evolving
mission parameters and potential anomalies.

(D1) Deployability. The FSW design shall be deployable in terms of appropri-
ate allocation of the software to on-board compute elements, as the runtime
execution environments that support integration with various subsystems.

(D2) Integrability. The FSW design shall ensure that its software elements
can interact and function together in a cohesive manner.

(D3) Modifiability. The FSW design shall support modifiability in order to
support software changes with minimal risk, in order to accommodate up-
dates or addition of new functionality.

(D4) Testability. The FSW design shall support testability in order to ensure
that functions behave as expected and meet the appropriate space mission
reliability and safety requirements.

Observe that each driver addresses a specific concern. Deployability (D1)
ensures efficient allocation across heterogeneous on-board computing resources,
vital for resource-constrained environments and redundancy demands (aligning
with flexibility in ISO/IEC 25010). Integrability (D2) aims for seamless interac-
tion between software elements, minimizing interface errors that can propagate
system-wide failures (interoperability per 25010). Modifiability (D3) addresses
the need for in-flight updates and feature enhancements, crucial for extending
mission lifecycles or responding to unforeseen circumstances, while minimizing
regression risks. Testability (D4) is naturally paramount for validating adherence
to reliability and safety of a specific class of mission [10].
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3 Architectural Views as per 4+1

In the following, we elaborate on the architecture using the 4+1 architectural
view model [19]. Our selection of 4+1 stems from its long-recognized ability to
comprehensively address the multifaceted nature of complex software systems.
This structure supports thorough analysis and promotes clear communication
across interdisciplinary teams, which are typical in scientific missions. Addi-
tionally, it aids on-boarding by presenting the system in accessible, role-specific
views. Although the model’s merits have been long-recognized in the commu-
nity, we note the absence of a comprehensive FSW architectural design in the
public domain. For elaborating a FSW architecture, we believe that it is highly
appropriate in its provision of multiple perspectives. In our case, perspectives are
tailored to specific concerns (from on-board compute elements, to development,
to fault management techniques), ensuring that the architecture is understood
and validated from various angles. Accordingly, we detail the architecture ac-
cording to the following views:

1. Physical: Representing the system engineer’s perspective, this view de-
scribes the on-board hardware topology and the various execution environ-
ments of the FSW.

2. Logical: Representing the end-user perspective, this view describes the or-
ganization of on-board software components and their functionalities.

3. Development: From the programmer’s perspective, this view concerns the
arrangement of modules in a topology as well as the development workflow.

4. Process: From the integrator’s perspective, this view illustrates task inter-
actions and execution flows within the FSW system.

The Scenario View serves as the “+1” component, integrating the four primary
views through a series of scenarios that demonstrate key system functionalities
—to illustrate such a scenario, we select particularly a fragment of the fault de-

tection and isolation mechanism [16]— often deemed cross-cutting as it involves
activations of different parts of the software architecture. We adopt UML2 dia-
grams to illustrate the 4+1 views [24].

3.1 Physical View

The Physical View illustrated in Fig. 1 consists of two primary components:
the ground segment and the space segment, reflecting the typical perspective
of space system engineers. Communication between the ground station and the
nanosatellite is facilitated by each segment’s transceivers, which ensure data ex-
change through the ground and satellite antennas, establishing a communication
link between the segments during 5-minute windows that occur every 12 hours.

In the ground segment, the primary interface for operators comprises the
ground software1. Its core functions include monitoring the satellite’s health by
collecting telemetry beacon data and issuing operational commands controlling

1 We treat ground software as out of scope in this paper, as it involves axiomatically
different architectural drivers, decisions and operational context.
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Fig. 1. Deployment diagram illustrating the hardware aspects of the system and soft-
ware modules running on each hardware component.

the spacecraft. Within the space segment, onboard communication between sub-
systems takes place over a shared Controller Area Network (CAN) bus. The mis-
sion’s FSW operates on two processing units: the On-Board Computer (OBC),
specifically the GOMspace Nanomind A3200, which utilizes an Atmel AVR32
microcontroller unit (MCU), and the Payload Data Processing Unit (PDPU),
the Nanomind HP MK3, which integrates a Xilinx Zynq 7000 system-on-chip.

The FSW deployed on these processing units is responsible for executing mis-
sion specific tasks, including system configuration, command execution, event
logging, telemetry management, health monitoring, and task scheduling. Due to
the limited duration of the communication windows with the ground station,
the software is designed for autonomous operation, transmitting collected data
only on request when the satellite is within range of the ground station’s anten-
nas. Additionally, the PDPU handles the compression of data acquired from the
mission’s on-board hyperspectral camera and transmits the processed output to
a high-speed laser communication system.

Observe that in the design presented, both the OBC and the PDPU function
in a multi-master configuration, where the OBC serves as the primary system
controller. While the OBC is the primary execution context of the FSW as is typ-
ical in missions, we highlight an important deployment aspect of the developed
architecture: All FSW components are also deployed on the PDPU to ensure
continued operation in the event of an OBC failure, demonstrating the system’s
deployability and fault tolerance. This redundancy is illustrated in Fig. 1, where
the redundant device represents the OBC functionalities that the PDPU can
assume, in addition to its nominal role in managing payload operations.

3.2 Logical View

The Logical View of the proposed FSW architecture focuses on realizing its
functional requirements. We opted for the class diagram of Fig. 2 to describe the
objects of the architecture and the static relationships that exist among them.
It is divided into functionality areas [24] that encompass classes providing the
same functionality.

The Communications area facilitates the communication with other satellite
subsystems and the ground station uniformly (D2). The CubeSat Space Proto-
col (CSP) is a proven low-footprint and modular choice [20] that encapsulates
networking information (D3). The CommCSP class encapsulates the networking
functionality: it receives (or forwards) packets’ content from the Framer class
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Fig. 2. Class diagram representing the Logical View of the FSW architecture —it
categorizes classes based on their functional areas and explicitly illustrates significant
relationships among them. Dashed arrows express dependency, solid arrows denote
association and solid hollow arrows indicate generalization, following UML2 notation.

(or the Deframer class). The Framer class undertakes the encryption of the pay-
load of the packet that results from the issuance of a command or file transfer.
The Deframer decrypts the packet’s payload and either routes commands to the
CmdDispatcher class or forwards the file contents to the FileUplink class. The
FileUplink class assembles parts to complete a file, while the FileDownlink class
is responsible for fragmenting file contents into CSP packets.

Following the third (3rd) rule proposed by Hinchey [17], the BufferMng class
manages memory statically to mitigate the unpredictability of dynamic alloca-
tion, something typical in critical flight software. The centralized memory man-
agement allows: (a) straightforward modification of memory allocation strategy
without impacting other classes of the FSW (D3); (b) controlled testing scenarios
and more robust verification of memory usage (D4).

The Command Handling area consists of two classes, the CmdDispatcher and
the CmdSequencer. The CmdDispatcher handles the routing of issued commands
to their destination and the return of their status to the source after comple-
tion. Moreover, it encapsulates how the class instances communicate with com-
mands in the runtime environment using the mediator design pattern [11]. The
CmdSequencer class complements the functionality of the CmdDispatcher class
by supporting in-order execution and scheduling of command groups.

Certain classes provide functionality globally accessed by all components.
The Periodic Tasks sub-area consists of three classes: Time, RateGroupDriver

and ActiveRateGroup. The Time class shares the system’s time with other classes
and can synchronize the system’s time to that of the ground station. The time
can be retrieved from either GPS, FRAM RTC or the MCU’s system clock. The
RateGroupDriver handles periodic signaling of the ActiveRateGroup by sourcing
its timing information from the Time class. When the ActiveRateGroup gets sig-
naled, it will perform sequentially the actions with which it has been configured.
Although the RateGroupDriver is a singleton [11] class, the ActiveRateGroup sup-
ports multiple instances. The PrmDB class utilizes non-volatile memory storage
to persist configuration parameters, while the TlmChan class is responsible for



FSW: A Rigorous Architecture Perspective 7

storing telemetry in non-volatile memory (ROM) in a serialized form suitable
for downlink to ground. The ActiveLogger class stores the generated events from
the FSW components in a non-volatile memory (ROM/FRAM); using config-
urable filtering functionality (D3), it forwards filtered events to FDIRController

and fatal ones to FatalHandler. The Health class implements a software watchdog
timer tailored for FSW components, effectively realizing the Ping/Echo archi-
tectural tactic described in [1]. If a periodic ping sent from the Health class is
not returned in a timely manner, a fatal event will be raised. Note that both
telemetry and events are optionally and periodically downlinked.

The Health Monitoring area comprises classes that handle and respond to
events from the ActiveLogger class. The FDIRController class reacts to filtered
events with pre-configured and tested procedures. It enables early mitigation of
predefined high-risk events to ensure quick system response and prevent mission
failure. The FatalHandler class manages fatal events and reboots the system
after a configurable amount of time if one is received. Section 4 elaborates on
the reasoning behind these two classes that handle events.

Spacecraft operation typically involves several so-called modes, which encom-
pass the various planned phases of the mission. Each mode has specific objectives
and operational requirements, and the nominal mode is the standard state with
all systems functional. When significant anomalies occur, the spacecraft may
autonomously enter safe mode, a minimal configuration focused on survival.
Critical mode signifies a severe failure demanding immediate action to prevent
mission loss. The Satellite’s Management area includes the subsystem’s managers
and the operational mode management. The Manager abstract class provides the
basic common interface, used by concrete manager classes to realize their own.
Each satellite subsystem —OBC, Attitude Determination and Control System
(ADCS), Electrical Power System (EPS), etc.— is assigned a dedicated man-
ager. The basic common interface includes: (a) tracking the subsystem’s state,
(b) managing peripherals, and (c) validating the operational mode to execute
the corresponding command that was received. The Controller class encapsulates
the spacecraft modes and the transitions between them through a hierarchical
structure of Finite State Machines (FSMs). A top-level FSM manages the mode
of operation (e.g., nominal, safe, critical), while each is further decomposed into
substates, implemented as nested sub-FSMs, to capture more granular system
behavior. The class also provides entry, exit and guard functions at each mode
and an interface to change the mode from ground or other FSW component.

3.3 Development View

The development process includes two phases: the initial project setup and the
component-based decomposition. The setup phase establishes foundational ele-
ments including compilers, build systems, hardware drivers, and the Operating
System Abstraction Layer (OSAL). Subsequently, the development process de-
composes the system into modular components. The design of these components
targets their generic functionality and their reusability. We opted to present the
Development View using two UML diagrams: (i) a package diagram (Fig. 3) illus-
trating the fundamental building blocks, and (ii) a component diagram (Fig. 4)
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detailing the interconnection of the framework components. These are known as
Service Components (Svc) and mission-specific Components and are designed to
meet the functionality specifications of the OBC FSW. To maximize reuse of
flight-proven code we leverage F’ facilities as much as possible [2].
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Fig. 3. Package diagram illustrating the platform-specific layer (top) and platform-
agnostic layer (bottom). Arrows denote dependency, following the UML2 notation.

Platform Porting: Porting is essential and requires adaptation of the compo-
nent-based workflow, involving cross-compilation of the framework in the AVR32
toolchain2. Platform-specific constraints and capabilities such as the number of
buffers, their size and the maximum number of concurrent commands, are spec-
ified in the F’ Configuration. The F’ platform layer also includes Drivers needed
for the hardware of the A3200 board like the NOR Flash, FRAM and I/O inter-
faces, while the platform specific development concludes with the OSAL, which
consists of the RTOS, the File System, Watchdogs and Log format of the sys-
tem3. After configuring the platform-specific layer, later component development
is hardware-agnostic, enabling the same FSW codebase to be deployed across
different platforms (D1); observe that components such as Health and FatalHan-

dler are connected to hardware and the OSAL of the architecture, pointing to
additional platform-specific adaptation. Figure 3 distinguishes the upper layer
as platform-specific and the lower layer as platform-agnostic.

Component architecture: For an effective modular system, the FSW de-
sign relies on building blocks termed components, which encapsulate discrete
portions of the system’s functionality. This component-based architectural prin-
ciple enhances testability significantly by enabling independent unit testing and
integration testing through scenario-based evaluation, typically employed at fi-
nal process stages in the domain (D4). We use F’ ports to create communication
channels between components; F’ ports are base classes that represent well-
defined interfaces (D2) and are categorized as either input (receiving data) or
output (invoking an input port by sending data to it). Components and ports
collectively form the core functionality of the FSW, enabling the system to exe-
cute its intended mission objectives, as illustrated in Fig. 4.

2 nasa.github.io/fprime/v3.4.3/UsersGuide/dev/porting-guide.html.
3 nasa.github.io/fprime/v3.4.3/UsersGuide/dev/os-docs.html.
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Fig. 4. Fragment of a Component diagram of the FSW architecture. The ports are
type-designated: (a) output ports in white; (b) asynchronous ports in light gray; (c)
synchronous ports in dark; (d) guarded ports in black. The complete Component dia-
gram is available in the anonymized accompanying material.

3.4 Process View

From the integrator’s perspective, FSW components can be classified as either
active or passive. Active components include their own execution thread and
contain a queue to store incoming data prior to processing. In contrast, passive
components operate within the context of the caller’s thread. The communica-
tion ports between the components are categorized as either asynchronous or
synchronous. Asynchronous ports enable non-blocking communication by oper-
ating independently on the thread of execution of their component. Conversely,
synchronous ports function akin to traditional function calls, executing their
functionality within the thread of the invoking component. A subtype of syn-
chronous ports, known as guarded ports, ensures single-threaded access, thereby
preventing race conditions among calling threads. The BufferMng component
exemplifies the practical utility of guarded ports in ensuring thread-safe opera-
tions. This component is responsible for managing the system’s limited pool of
statically allocated buffers. To prevent race conditions during buffer transmis-
sion and reception —which could otherwise compromise system stability— the
component exclusively utilizes guarded ports for synchronization and safe ac-
cess control.As a result, active components may include both synchronous and
asynchronous ports, whereas passive ones which do not correspond to a thread of
their own, are limited to synchronous ports. Figure 4 illustrates the classification
of ports within our architecture alongside the corresponding component types.

Figure 5 depicts a representative example of process communication; it il-
lustrates the Process View of the mode change mechanism. In short, inherent
functionality in Fig. 5 entails the following. The CmdDispatcher thread is respon-
sible for forwarding mode change commands to the Controller component, which
controls the satellite’s operational mode. The CmdDispatcher thread places the
command in the queue of the Controller component. As an active component, the
Controller has a dedicated execution thread. Once the command is dequeued, the
Controller thread first issues an acknowledgment of its reception. It then evaluates
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whether the requested transition is permissible. This evaluation step is crucial
for ensuring system stability, preventing unsafe mode transitions, thus maintain-
ing operational constraints. The assessment considers factors such as the current
subsystem states, ongoing mission tasks, and predefined mode transition rules
—all of which are encapsulated within the Controller’s logic. If the transition is
evaluated as valid, the Controller thread enqueues the new mode data into the
queue of the PrmDb component. As an active component, PrmDb processes the
new mode data using its execution thread to update the parameter representing
the current operational mode in FRAM storage; it then notifies the Controller

thread of the result of the mode change. Subsequently, the Controller thread sus-
pends execution until the ActiveLogger task completes logging the event in the
ROM and FRAM. Since the input port of ActiveLogger is a synchronous port,
it operates within the execution context of the calling thread —in this case, the
Controller thread. Upon a successful mode transition, any additional commands
required for execution are forwarded to the CmdDispatcher thread, which routes
them to the appropriate components as part of the new mode’s entry function.
Conversely, if the mode change request is evaluated as invalid, the Controller

component logs an event and takes no further action.

setMode
ACK

eval

set
ACK

log

cmd

log

CmdDispatherCmdDispatcher ControllerController PrmDbPrmDb ActiveLoggerActiveLogger

[not allowed]

alt

[allowed]

Fig. 5. Sequence diagram presenting the Process View of the mode change mechanism.
Filled arrows indicate asynchronous calls, unfilled arrows denote synchronous calls and
alternative (alt) frame models conditional execution, following UML2 notation.

3.5 Scenario View

To complete the Kruchten’s view model and showcase the combination of the
primary 4 views, in the following paragraph we present the critical scenario of
Fault Detection, Isolation, and Recovery (FDIR) [16]. The FDIR mechanism
onboard a spacecraft is a critical autonomous system that identifies anomalies,
pinpoints their source, and executes pre-programmed actions to restore nom-
inal operations. It ensures mission survival by mitigating effects of hardware
or software failures through rapid response and corrective measures, minimiz-
ing downtime and potential damage. As such, we select a fragment of FDIR,
particularly because it involves different parts of the overall architecture.

The (use case) scenario in Fig. 6 demonstrates a high-level view on the sys-
tem’s autonomous fault management capability. The procedure begins when



FSW: A Rigorous Architecture Perspective 11

a subsystem manager (OBCManager, EPSManager, etc.) component raises an
event. Such events are collected by the ActiveLogger component, which catego-
rizes them based on severity. Lower-severity events (trace, debug, info) are logged
for later inspection by ground operators, whereas higher-severity events (warn-
ing, error) are both logged and forwarded to the dedicated FDIRController compo-
nent. The response of the FDIRController component depends on the satellite’s
mode of operation. As an example, if the satellite operates in image_capture

mode and the EPS battery level falls below a critical threshold, the system will
deactivate the hyperspectral camera unit. In the other case, if the same bat-
tery event occurs in compression mode, the PDPU unit will be deactivated
(instead of the hyperspectral camera). To determine the appropriate action, the
FDIRController component queries the Controller component for the current oper-
ational mode and sends the required command to the CmdDispatcher for routing
to the relevant component. In the case of the previous example, the EPSMan-

ager component receives a command to cut the power of the activated payload.
Additionally, if a change in the spacecraft’s mode of operation is required, the
corresponding command will be sent to the Controller to save the new mode. This
autonomous monitoring and response process operates continuously at runtime,
ensuring that the system detects and reacts to critical conditions.

generate

event

severity

high
forward

get mode

of operation

recovery

needed

log eventsave event

issue recovery

commands

set mode

of operation

route

command

execute

command

SubsystemManager ActiveLogger FDIRController CmdDispatcher

YES

NO

YES

NO

Fig. 6. Activity diagram illustrating the FDIR use case scenario, following UML2.

4 Discussion & Lessons Learned

The FSW architecture presented in this paper is the result of a series of deliberate
design decisions and trade-offs aimed at satisfying the stringent requirements of
the mission at hand. Our experience in designing this architecture has led us to
several key observations and insights, which we detail below.

Among the primary design drivers was the need for deployability in order to
ensure efficient allocation of software across the heterogeneous on-board com-
pute hosts (OBC/PDPU) and meet the redundancy demands of the mission.
Beyond the flight environment, deployability was also critical to the develop-
ment workflow, particularly in supporting continuous integration (CI) processes,
where build and testing (at unit, integration, and harware-in-the-loop levels)
are supported across various pipeline stages. Given that these activities oc-
cur on different hardware architectures, —i.e., development on x86, testing on
x86/AVR/hardware-in-the-loop, and deployment on AVR— deployability was
deemed important to be seamless, despite the inherent complex technicalities.
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Integrability was another key focus, aiming to minimize interface errors that
could propagate system-wide failures, as exemplified in the FDIR use case. This
was achieved by limiting dependencies, promoting encapsulation, and defining
narrow interfaces with ports serving as the sole communication channels be-
tween components. To dictate the execution flow, these components are cate-
gorized into active and passive types. This separation allows certain operations
to progress concurrently, while others executed on the caller’s thread of control
lead to a finer-grained management and monitoring of the system’s state. Addi-
tionally, the architecture emphasizes loose coupling and high cohesion, e.g., as
exemplified by the CmdDispatcher; this component employs the mediator pattern
to prevent others from sending direct commands to each other, thereby ensur-
ing that command dispatching is mediated through a centralized entity. Finally,
careful resource management was achieved through static allocation with the
BufferMng serving as an intermediary entity enforcing, prioritization, safety, and
fairness in memory —a critical and scarce resource.

Modifiability was also a crucial consideration, as in-flight updates and feature
enhancements are often necessary to extend the mission lifecycle or respond to
unforeseen circumstances. By adhering to loose coupling and high cohesion prin-
ciples, we ensured that modifications could be implemented with minimal risk of
regression. For instance, the Time class encapsulates the system’s time source,
allowing straightforward time source modifications. Additionally, the proposed
architecture balances flexibility and efficiency in fault handling by incorporating
both a FatalHandler and an FDIRController. While the FDIRController is an active
component requiring a thread context switch and incurring greater overhead; the
FatalHandler is passive and executes on the caller’s thread with minimal delay.
More broadly, the modularity of the proposed architecture enhances modifia-
bility by enabling component updates and replacements with minimal effort,
thereby streamlining both development and maintenance.

Finally, testability was paramount, as it is essential for validating adherence
to the stringent reliability and safety standards of space missions. This was
achieved by incorporating dedicated testing interfaces, leveraging F’ primitives
and workflows to facilitate structured validation, and utilizing automated simu-
lation environments alongside continuous integration to streamline testing across
different stages of development. Additionally, rigorous verification protocols in-
spired by common practice [10] were followed to ensure the system meets its
requirements, further enhancing reliability and robustness.

The trade-offs of the proposed design reflect the balance between the four
competing requirements and the constraints of development time and resources.
These time limitations are inherent in the overall endeavor given a relatively
short mission timeline of a few months from the project’s start to launch typical
in New Space nanosatellite missions [4, 25]. Our design rationale was guided
by a combination of mission requirements, industry best practices, and lessons
learned from hitherto space software development efforts. These lessons include:

– Although meeting the mission’s redundancy demands introduced a level of
managerial and technical complexity that was initially underestimated, the
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adoption of standardized interfaces and modularity as principles were essen-
tial for realization.

– The interdisciplinary nature of the mission requiring collaboration among
different fields (e.g., physics, computer science, aerospace engineering) high-
lighted the need for architecture and process phases capable of accommo-
dating diverse domain-specific concerns and various approaches to solutions.
The architecture’s inherent modifiability was instrumental in supporting this
adaptability, especially given the mission’s accelerated development timeline.

– Due to the mission-critical implications of fatal events, the software sys-
tem was designed to preserve error state information promptly and initiate
timely reboots to prevent further damage. This capability was made possible
through the use of a dedicated passive component (FatalHandler), to enable
error state preservation and system recovery with minimized overhead.

– The decision of following component-based design was also instrumental.
While loose coupling introduces additional complexity in terms of inter-
component communication, it supports key non-functional requirements such
as modifiability and integrability.

– Similarly, although loose coupling supports integrability and modifiability,
it can impact performance at runtime, e.g., due to increased function calls
and higher memory usage which requires careful design and assessment.

However, we underline that the approach of following a rigorous architectural
design through the 4+1 model provided a comprehensive and multifaceted rep-
resentation of the system, supported stakeholder communication and enabled
architecture understanding and validation from various angles.

5 Related Work

We advocated a FSW architecture and described our experience in its design;
consequently, we classify related work into two major categories. First, we discuss
software architectures in other spacecraft contexts, positioning our work within
a major application area. Subsequently, we consider other, but architecturally-
relevant works from a wider software engineering perspective.

Forms of layered and component-based architectures are typical in FSW ar-
chitectures, often largely comprising of the operating system abstraction, com-
munication/interfaces, middleware, and functional software [5,7,31]. Often cited
as key goals include availability, extensibility, flexibility, reusability and reliabil-
ity [20,26]. The utilization of component-based architectures emerges as a promi-
nent trend —lately including adoption of F’. Rosemurg et al. [28] detail the inte-
gration of the Interplanetary Overlay Network mission with F’, demonstrating its
adaptability and test-related component-level features. Rizvi et al. [27] further
highlight the reusability and modularity of F’ components through their deploy-
ment on the Lunar Flashlight and NEA Scout missions. Eshaq et al. [8] pro-
pose a ground-up FSW design emphasizing modularity and reusability through
an app-based, service-oriented architecture with a command-line interface and
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script engine, an approach that aligns with the principle of abstraction as a cor-
nerstone of robust FSW design. Latest endeavors have employed model-based
engineering and adoption of UML (or variants, such as SysML) —see [15] for
a notable approach. A taxonomy of architecture styles is outlined in [23] with
respect to the CubETH satellite.

Advanced software engineering techniques have also seen use in spacecraft
missions —in the following, we highlight key ones that we deem architecture-
relevant for our context. Wang et al. [29]’s decomposition of system requirements
into distinct architectural layers, coupled with the implementation of heteroge-
neous backup modes, exemplifies a systematic approach to addressing complex
mission objectives. Similarly, the LADEE mission FSW [13] highlights MBSE
from requirements to automated code generation —we highlight the emphasis on
performance-related test drivers and formal verification techniques. Advanced re-
quirements techniques such as goal modeling are developed in GOPRIME [21], a
framework for monitoring a goal model (from individual requirements to satisfac-
tion of higher-level goals) integrated within the FSW architecture with according
executable instrumentation. Due to the modularity inherent in the architecture
presented and use of F’, integration of such reasoning could be a conceptual next
step in our design and highly relevant to FDIR activities. Gonzalez et al. [12]
apply software visualization techniques for FSW quality monitoring illustrated
over the SUCHAI satellite series along with a FSW architecture based on the
command design pattern, while also adopting fuzz testing [14]. Fuzz testing is
also employed for automated vulnerability analysis in [30] with an empirical
analysis over the FSW for ESTCube-1, OPS-Sat, and Flying Laptop, without
over-reliance on extensive human expertise.

6 Conclusions and an Emerging Research Agenda

In this paper, we illustrated the FSW architecture for the ERMIS3 nanosatellite
mission as per the 4+1 architectural view model. By deconstructing the on-board
software system into its Physical, Logical, Development, Process and Scenario
Views, we highlighted the architectural description and distilled architectural
decisions, trade-offs, and design rationales that guided development. This ex-
perience report intends to advocate rigorous software architecture principles in
software engineering for space software, by sharing insights and providing de-
tailed architectural documentation with the overall goal of advancing a novel
research agenda within the community. Thereupon, we identify key directions
that comprise an emerging research agenda.

Firstly, development of a comprehensive reference software architecture as
per ISO/IEC WD4 42010, similarly to those that have been proposed in similar
contexts but for FSW is highly desirable; drawing inspiration from established
architectures, this has potential to consolidate state-of-the-art research of the
community in a common platform. For instance, the architecture presented im-
plements fault tolerance at the architectural level to the scale required by the
standards of the class of mission; considerations of other classes may dictate
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other mechanisms. Secondly, formal verification at the FSW architecture layer,
with techniques such as model checking that can be embedded at the architec-
tural (i.e., versus code) level can aim for guaranteeing correctness and reliability
especially with respect to component interactions and interfacing (which yield
runtime behaviors). Finally, we believe a careful assessment of which variation
points in the architecture should be reconsidered in order to enable architectural
technology transfers to other on-board space systems can provide a systematic
way forward to architectural developments by the community.

Data Availability Statement: Further architectural documentation can be accessed
at: software.aerospace.uoa.gr/ecsa25-ermis-arch.
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