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Recent advancements in information technology have ushered a new wave of systems integrating Internet
technology with sensing, wireless communication, and computational resources over existing infrastructures.
As a result, myriad complex, non-traditional Cyber-Physical Systems (CPS) have emerged, characterized
by interaction among people, physical facilities, and embedded sensors and computers, all generating vast
amounts of complex data. Such a case is encountered within a contemporary airport hall setting; passengers
roaming, information systems governing various functions, and data being generated and processed by
cameras, phones, sensors and other internet-of-things technology. This setting has considerable potential of
contributing to goals entertained by the CPS operators, such as airlines, airport operators/owners, technicians,
users and more. We model the airport setting as an instance of such a complex, data-intensive CPS where
multiple actors and data sources interact, and generalize a methodology to support it and other similar systems.
Furthermore, this paper instantiates the methodology and pipeline for predictive analytics for passengers flow,
as a characteristic manifestation of such systems requiring a tailored approach. Our methodology also draws
from DataOps principles, using multi-modal and real-life data to predict the underlying distribution of the
passenger flow on a flight level basis (improving existing day-level predictions), anticipating when and how
the passengers enter the airport and move through the check-in and baggage drop-off process. This allows to
plan airport resources more efficiently, while improving customer experience by avoiding passenger clumping
at check-in and security. We demonstrate results obtained over a case from a major international airport in
the Netherlands, improving up to 60% upon predictions of daily passenger flow currently in place.
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1 INTRODUCTION

Recent developments in information technology, have fostered a new generation of enterprise
applications that amalgamate powerful Internet technology with wireless networks, sensors, and,
mobile devices [15]. As a consequence, Cyber-Physical Systems (CPS) have emerged as non-
traditional systems characterized by a congruent interaction among people, physical facilities, and
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embedded sensors and computing resources. These systems generate vast amounts of data—also
referred to as Big Data—with a huge potential to contribute to key goals in industry such as
increased transparency, personalisation, and improved decision making [14]. However, the Big Data
- CPS tandem has only caught traction recently and remains still underdeveloped. The complexity
of CPS calls for systematic, proven yet innovative software and data engineering approaches—
collectively referred to as DataOps [8]—that fluidly and continuously assume the specific traits of
such systems [7]. This paper introduces a methodology to cater for on-the-fly analytics adopting
DataOps as the paradigm of choice, while leveraging Big Data stemming from CPS.

Our target domain is one of the most complex and influential industries to date — the air transport
industry. This reflects the intersection of CPS - think of the many sensors and devices active in
any airport hall - and the Big Data generated therein. On the one hand, the air transport industry
has experienced a consistent and sheer exponential growth over the past years. In 2017, a record of
4.1 billion passengers were transported world-wide. This growth will increase up to 5% per year
over the next 20 years [1], bringing along operational challenges for airlines and airports. On the
other hand, post-pandemic traveling requires novel insights regarding safety, security and health,
to evolve key operational processes as check-in and baggage drop-off for departing passengers.

Recent literature has modeled the passenger flow at airports using various data, such as Wi-Fi
indoor location [11; 16], security checkpoints information [19], or simulations [19]. Further, these
approaches predict passenger flow applying deep learning [16; 17], Long-Short Term Memory
networks [19], and Bayesian networks [11]. However, the state-of-practice entails informal forecasts
by experienced employees, using rule-based systems with little automated or data-driven support.
This stems from the Grounded Theory based in our in-site observations at the Europe’s third
busiest airport, and our interviews with managers, operators and staff from the airport and a major
worldwide airline company (detailed in Section 3). Current methods in the aviation business do not
exploit contemporary advancements, and neglect large volumes of sensor and device generated
data. This results in losses for airports, airlines and passengers. In particular, for airports’ landside
operations, an adequate prediction of the passenger flow is crucial to guarantee security, safety,
health, and overall wellness of passengers and airport staff. As an example, sometimes queues
become long and chaotic, due to badly provisioned resources: less staff than actually needed at
check in and security, poor spatial distribution, and little to no automated devices such as self
check-in, baggage drop-off, or biometric e-gates. Meanwhile, at a different time of the day, or
another sector of the airport, desk staff, security agents and technology remain idle.

The airport setting may be seen as a complex, data-intensive Cyber-Physical System (CPS), an
integration of people, computation, data, and physical processes. Embedded devices monitor and
control the physical processes, with feedback loops where physical processes affect computation and
vice versa. In particular, we focus on passenger flow analysis, as it demands a tailored approach based
on predictive analytics. Our methodology is based on DataOps and machine learning, combining
and exploiting passenger profiling and location data from multiple sources (sensors, Wi-Fi, mobile
apps), as input to a deep neural network, with the goal of predicting passenger flow more accurately.
Our approach works on a fine-grained flight level basis, while state-of-practice predictions are daily.
It also improves accuracy — predicting when, how, and how many passengers enter the airport and
move through the check-in and baggage drop-off process. The resulting data pipeline blends within
the CPS to then improve and optimize physical processes, closing the feedback loop.

Specifically, this paper features four main contributions:

(1) We model the target domain as a data-intensive CPS, featuring an interplay of multiple
data sources, people, physical aspects and cyber/computational aspects interacting within a
complex space.
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(2) We propose a DataOps pipeline and methodology to bridge the Cyber- and Physical world,
and explore bringing predictive analytics for the passenger flow forecasting problem.

(3) We instantiate our prediction pipeline in a prototype featuring four different predictive
models (viz.: the existing Baseline Model, Simple and Extended Linear Regression, and Neural
Networks).

(4) We evaluate predictive models within our pipeline over one year of real operational data
from a major airport and airline’, and demonstrate how our models substantially reduce
prediction error with regards to the one currently used in practice.

The remainder of this paper is structured as follows. Section 2 presents an overview of the
problem domain and its treatment as a CPS, along with the research questions. Section 3 then
describes the methodology followed to design the solution, featuring domain and requirements
analysis and data sources identification and analysis. Section 4 details data pipeline and predictive
models for passenger flow. Section 5 presents the evaluation of our approach with a real case of a
major airline and airport operations. Section 6 discusses results and limitations of our approach.
Section 7 presents related work, and finally Section 8 concludes the paper.

2 AIRPORT PASSENGER FLOW AS A CYBER-PHYSICAL SYSTEM

CPS embody physical and engineered systems whose operations are monitored, coordinated, con-
trolled and integrated by a computing and communication core [22]. By definition, CPS interact
with the physical world, and are often required to operate dependably, safely, securely, and effi-
ciently; modern CPS have to deal effectively with dynamic environments [33], and control their
changing behavior in a resilient fashion. Figure 1 illustrates an airport as a complex CPS, where
multiple actors and data sources interact with intertwined computational and physical aspects [34].
Essential features where the physical-digital domain ’interconnect’ including (i) digital sensing
that hooks into the physical realm and quantifies the physical world, such as location data from
roaming passengers; (ii) DataOps - i.e., data engineering, quality and integration — intertwines
through data the processes, goals and resources to perform analytics, and, (iii) actuation facilities
that enforce controller-provided changes in the physical world, such as actions that change the
passenger flow as a result of data-driven control decisions.

The physical aspect encompasses hardware, humans, rules, regulations, and business processes
associated with aircraft and air transport systems. Additionally, performance goals, such as safety,
capacity, efficiency, and aviation security, along with air transport system level performance metrics,
such as flight delays, passenger flow rates, and air traffic densities. Of course it also includes aircraft
management aspects and components [26], although those remain outside the scope of this work.

Conversely, computational aspects include mobile networking and information technology,
embedded in airport systems. This notably pertains to performance goals, such as computer-
software- and network- reliability and availability, information, computer and network security,
data and location privacy. This has an operational footprint in the physical world, since it typically
relies on additional physical components (e.g., networking equipment, mobile devices) and physical
resources to function.

2.1 Research questions

We have observed that predicting the passenger flow in an airport is a characteristic problem that
can be addressed from a new viewpoint — considering and modelling the airport as a complex CPS.
We pose the following Research Questions (RQs), following a model-predict-explain pattern [30]:

1Some data are omitted for confidentiality reasons.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: May 2021.



4 Garriga, M. et al

Continuous Feedback (Sense, Compute, Actuate)

- Departure time
- Number of passengers
- Number of baggage pieces

- Check-in time
- Baggage drop-off time
- Passenger profiles Predictive Models  Predictive Analytics

- GPS Location
- Airport Wifi
- Mobile App data

2. Systematic analysis of Domain, 3. Data Pipeline supportiné“,

1. Model Airport as a Cyber Physical System Requirements and Data Sources Predictive Analytics

Data Engineering

DataOps Data Quality
Methodology Data Integration

Fig. 1. Emerging Cyber-Physical System view from the airport setting, supported by a DataOps methodology
for predictive analytics.

RQ1: How to model the problem domain by means of DataOps and Cyber-Physical
Systems? First we need to understand the underlying business processes, composite system and
domain. To this end, we carried out stakeholder interviews and in-site observations, driven by
Grounded Theory as the systematic methodology to develop (and validate) the system model from
domain knowledge.

RQ2: How to predict passengers flow more accurately? Afterwards, we illustrate the appli-
cation of DataOps for CPS by designing a data pipeline for the problem of passenger flow prediction.
The pipeline captures and combines multi-modal data streams from different heterogeneous and
distributed sources to improve existing predictions in terms of accuracy, time and consistency. We
develop several predictive models for passenger arrival behavior, and experimentally validate our
proposal over a real case, comparing against the baseline model currently employed in practice.

RQ3: How to explain the prediction results in terms of the most important features?
Within predictive models, there is a trade-off between explainability and performance [25; 41; 42],
where more complex models such as neural networks usually outperform better interpretable
models such as linear regressions. We explain the prediction results in terms of the most relevant
features.

Figure 1 presents an overall view of our approach in the context of DataOps (bottom part), and
shows how data engineering, quality and integration help to address the problem at hand. In the
previous section we discussed how to model the problem as a complex CPS - Step 1 in Figure 1. In
the following section (Section 3 we perform a systematic domain analysis and identify the available
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relevant data sources - Step 2 in Figure 1. Then, we model a pipeline and architecture (Section 4) to
support predictions. Finally we evaluate a prototype of the approach, comparing against existing
predictions (Section 5) — Step 3 in Figure 1.

3 METHODOLOGY

We followed the Design Science Research Methodology (DSRM) [21], whose goal it is to develop
knowledge that the professionals of the domain — being data scientists, process owners, data
engineers and decision makers on airports and airlines — can use to design solutions for their field
problems. DSRM prescribes the following six key steps: (1) problem identification and motivation,
(2) definition of the objectives for a solution, (3) design and development, (4) demonstration, (5)
evaluation, and (6) communication.

Problem identification and motivation. Passengers arrive at distinct times prior to departure to
the airport, posing a challenge to act upon the crowds and potential congestion during a day of
operation. Lack of information regarding arrival times and service demands for decision makers
in the check-in process is the main underlying problem. This problem is two-edged: firstly, long
queues (at check-in, baggage drop, and security) and poor passenger experiences are undesirable;
secondly, they result in idling employees, sub-optimal usage of resources and associated costs.

Objective of the solution. Development of a DataOps methodology to provide more accurate
insights in the CPS at hand. We will focus on passenger flow at the departure section in an airport.
This means better insights in the number of passengers that enter the check-in process throughout
a day of operation, with the second-order goal to improve resource staff planning. The solution
should incorporate passenger-specific parameters that possibly affect their arrival time, and novel
data sources as model features, such as the travel motive (e.g., provided by a revenue management
department), as well as mobile device and sensor data with arrival behavior (e.g., provided by a
digital application team).

Design and development. We designed and developed a data pipeline that provides end-to-end
support for predicting passenger flow. Particularly, it extracts, merges and transforms data from
heterogeneous data sources throughout the CPS. Then, it feeds the curated and integrated data to a
predictive model and presents the results.

Demonstration. A proof-of-concept prototype fed with real data demonstrates the potential of
our approach. We implemented several predictive models to assess the feasibility, applicability and
accuracy of the approach. The prototype could be potentially deployed and integrated into the
processes of any airport or airline.

Evaluation. The proposed models are then compared showing substantial improvements against
an existing baseline, both at flight level and daily level. We show that the quality-interpretability
trade-off of machine learning models can be influenced in favor of more complex models by using
SHapley Additive exPlanations (SHAP [18]). SHAP explains predictions in terms of the contribution
of each feature to the final result, with the final goal of easy interpretation and actionability.

Communication. We communicate results in an agile manner, involving managers and decision-
makers in periodic feedback sessions. Results are presented on different levels of technical detail -
including, but not limited to, this paper — to achieve highly actionable and interpretable results.
For example, we calculated the Mean Absolute Error of the predictions in terms of number of
passengers every 15 minutes, which is meaningful for the domain experts.

The remainder of this section covers the methodology we followed to distill relevant requirements
from the problem domain. The broad set-up was inspired by the Cross Industry Standard Process
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Table 1. Key stakeholders interviewed for constructing the grounded theory (names and companies omitted
for confidentiality reasons).

Position

Description

Airline R&D Manager

Airline Analyst
Functional Programmer
Airport Officer

Chief Data Officer
Tactical Planner
Product Owner of ERP
tool

Landside Manager (HR
Planner)

Operational Assignment
Planner (HR Planner)
Unit Manager Passenger
Flow Control

Manager of Planning

Senior Manager of R&D prototyping environment within the Airline, in collaboration

with universities and research groups.

Senior and junior users of the legacy passenger

prediction model

Senior officer of the Operations Decision Support department at the Airline.

Junior airline employee estimating the workload for a specific period.

Semi-senior user of the Enterprise Resource Planning tool taking as input the graphs
made by a tactical planner and producing a plan that assigns workers to tasks.

Senior manager, end-responsible for the departure hall, who decides on the amount of
personnel to hire for a specific day.

Semi-senior employee that performs swaps of employees during a day of operation
when certain check-in desks are more busy than others.

Senior manager, responsible for a specific unit within the Passenger Services department.
Main responsibility is to guarantee a (close-to) continuous flow of passengers.

Senior manager, directly responsible of the operational assignment employees (see

Passage above).

Shiftleader Senior manager, direct responsible of the employees and operational part in the
departure hall.

Duty Manager Senior manager of the shift leaders, oversees a large part of the passenger operations.

for Data Mining Model (CRISP-DM [39]). Section 3.1 presents domain and requirements analysis
whilst Section 3.2 presents data sources analysis. These steps lay out a basis for a methodology that
can be followed to implement predictive analytics in a CPS within any organization.

3.1 Domain & Requirements Analysis

We follow a Grounded Theory (GT [4]) systematic approach to understand critical processes such
as passenger planning, staff scheduling and luggage handling. Constructing a GT starts with data
collection, usually in the form of observations and interviews, afterwards a more general theory
emerges from the analysis. First, we conducted unstructured interviews with key stakeholders,
and observation of their daily tasks, summarized in Table 1 (names and companies are omitted for
confidentiality reasons). These include but are not limited to HR planning and managers.

We discovered several attractive points both at landside and airside, including passenger flow
baggage processing and runway operations. All of these have typically dedicated operational teams
both at the airline and airport. In particular, operations in baggage handling and passenger flow
are highly correlated: modelling such processes as CPS paves the way for applying Data Science
methodologies and generate fitted prescriptive models.

All in all, focusing on passenger flow, the resulting theory is conceptualized in Figure 2. This
confirms that a smooth passenger flow is essential for the operations in the departure hall, customer
satisfaction and lately for safety and health of both passengers and employees.

Then, the planning process of ground agents was elicited, which is summarized in Figure 3. The
predictions and flight schedule are used as input for the tactical planning department to create
long-term plans and contract (external and flexible) resources. Next, the planning system generates
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Fig. 2. Summary of the results of the Grounded Theory (names, companies and numbers omitted for confi-
dentiality reasons). Legenda: NPS stands for Net Promoter Score, LC for Landside Coordinator.

a plan for a specific day with the number of personnel needed, two weeks in advance. Finally, the
operational assignment department assigns employees scheduled to work during a working day,
up to four days in advance. After that, no more changes can be done without incurring extra costs.
However, the following three problems occur:

(1) The number of passengers that are predicted is foo large. In this case, agents end up being
idle resulting in resources over-provisioning — something not desirable, since the majority of
the workforce is externally hired at relatively expensive rates;

(2) Too low numbers of outbound passengers are predicted. In this case, agents at check-in desks
cannot cope with the demand - i.e., resources under-provisioning — causing queues and
passenger waiting times to increase. This negative effect on customer satisfaction directly
translates to a decrease in revenues and health, safety and security risks.

(3) Passengers enter the process at different times than initially anticipated. This incurs expensive
swaps between agents that have to be performed during ongoing daytime operations.

We followed up with airport operations stakeholders to obtain more supporting data, in particular
regarding arrival profiles of passengers. Figures 4a and 4b confirm that parameters such as the
number of days a passenger booked her ticket in advance and the length of stay of a passenger
influence the arrival behavior. In addition to passenger specific features, flight specific characteristics
influence passenger behavior. These gut feelings from the different stakeholders are confirmed by
data, summarized in Figures 4c and 4d. The hour of the day a flight leaves and its destination also
influence the arrival behavior of passengers. The identified problems can be mitigated by gaining
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Fig. 3. The current planning process of the departure hall.

insights in the type and number of passengers expected during specific times of the day, based on
the available data generated within the CPS.

(0,001 (0. 001
(0,001 (0, 00]
(00, 2000] (00, 0000]

(a) Arrival profiles. y-axis: probability. x-axis: time (b) Arrival profiles. y-axis: probability. x-axis: time
prior to departure. Split: days booked in advance. prior to departure. Split: length of stay.

(000, 000]
(000, 0000]
(0000, 00001

DEST 1
DEST 2

(c) Arrival profiles. y-axis: probability. x-axis: time
prior to departure. Split: scheduled departure
time.

(d) Arrival profiles. Split: Continental vs Inter-
continental.

Fig. 4. Probabilities of arriving to the first touch point at the airport, based on different factors (actual values
omitted for confidentiality).

3.2 Data Sources and Analysis

To understand available information in the airport setting, first we interviewed managers and
senior employees both from the airline and airport operations teams. Then, we traced back the
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available data sources in use (or in lack). Two major categories emerged: (i) flight level and (ii)
passenger level data.

Flight level data. Those capture basic flight details, such as departure gate, type of traveler (e.g.,
transfer and intercontinental passengers) carrier, departure and arrival airport, and, configuration of
the plane. Secondary data pertains to time-related flight data, providing opportunities for analysis:
departure times, delay times, boarding start times, and actual and estimated turnaround times.
Furthermore, boarding intelligence data includes the number of passengers expected/present in
the flight, predicted boarding times, current boarding speed, and target boarding speed. Similarly,
baggage intelligence contains data on offloaded bags and the number of bags checked in for the
flight. Finally, booking information such as number of bookings, split by class and status (frequent
flyers, regrading, etc).

Passenger departure data. The most relevant are timestamps obtained from boarding pass
scans. The major ones record the first baggage drop-off time and the check-in time. These can be
superimposed with passenger profiles, such as cabin class, gender, nationality, check-in channel
type, length of stay, and number of passengers in the booking. Other fields within departure data are
passenger status, passenger-level predictions (if any), connection and security information. Finally,
travel motive is likely to influence passenger behaviour, as those travelling for business reasons
have a fixed (business) destination with fixed timing, whereas leisure passengers typically have
more fluid schedules. The actual formula used for this business-leisure segmentation is typically
confidential and internal to airlines, as it entails price segmentation — however, the main drivers
are destination and length of stay.

Passengers location. is critical to embark on (more) accurate prediction activities. However,
such information is not part of the in-place prediction models. This data could be obtained through
sensors within mobile devices — passengers that use airlines’ mobile applications may be tracked
by means of GPS and WiFi beacons. Indoor positioning literature has produced a vast number of
approaches for inferring positions and trajectories of devices roaming inside a spatial environment,
such as an airport [3; 35]. Those can be instantiated for this type of data source.

Customer satisfaction data. Airlines have customer satisfaction departments that periodically
gather such information through standardized passenger-oriented questionnaires. Their main goal
is to determine the Net Promoter Score (NPS) [24]; an industry-wide key performance indicator (KPI)
that measures how likely a passenger is to recommend the airline to others. Therefore, customer
satisfaction data encompasses background information on the passenger, such as personal details
and flight information. Then, the questionnaires split into departure, on board, and after flight
segments. Note that NPS is an airline-oriented KPI. For airport-oriented benchmarks, one could
use for example ASQ (Airport Service Quality)?, as another primary data source of passenger
satisfaction evaluation.

At this point, we can combine the insights gained by modeling the business domain as a CPS
(recall Figure 1) with the key processes and data sources identified and analyzed through Grounded
Theory. As an elaboration, Figure 5 presents the actual passenger flowchart which captures such
knowledge. The rectangles represent a touch point, where a passenger interacts with an employee
or a system. Aligned with self-service concepts, automated devices for the boarding procedures
- such as self-check-in devices and biometric e-gates — remarkably shorten the standby time of
passengers, and improve the overall flow. Diamonds represent splits in the passenger streams,
allowing to distinguish distinct cohorts of passengers, e.g., whether a passenger checked in at home

Zhttps://aci.aero/customer- experience-asq/
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or at the airport, as this affects service needs. Paths and decision nodes in the flowchart can be
annotated with concrete values based on data for each case (omitted here due to confidentiality).
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Fig. 5. The different passenger streams present in the departure hall.

4 DATA PIPELINE AND MODELS FOR PASSENGER FLOW PREDICTION

A data pipeline typically provide end-to-end support, from data identification, extraction, curation
to their integration, analysis and visualization [8]. Figure 6 depicts a generic, end-to-end architec-
ture of a DataOps pipeline that will cater for CPS-aware predictions. Notably, it can be dynamically
adapted to detect novel data sources on-the-fly, and accommodate (close-to) run-time data integra-
tion. We designed and developed a prototypical implementation of this pipeline architecture for
experimentation, exploration and validation in the context of this work.

In particular, the exploratory, prototypical DataOps pipeline for passenger flow prediction fuses
the data sources as described in Section 3.2 into one, unifying data lake. The data lake stores
conventional structured data such as, flight data and passenger data, along with data stemming
from mobile devices and sensor networks, e.g., passenger locations data tapping into mobile apps
and Wi-Fi. In this way, prediction models may exploit for example more accurate data about the
time between a passenger entering the departure hall and the scheduled time of departure.

In the next stage of the DataOps pipeline, the data sets are merged and curated, based on
syntactically and semantically reconciled passenger identifiers. Here one can apply relevant filters
(e.g., first-leg departure station) and data cleaning steps (e.g., handling missing or inconsistent
values), as preparation for analytics. This master d