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Recent advancements in information technology have ushered a new wave of systems integrating Internet
technology with sensing, wireless communication, and computational resources over existing infrastructures.
As a result, myriad complex, non-traditional Cyber-Physical Systems (CPS) have emerged, characterized
by interaction among people, physical facilities, and embedded sensors and computers, all generating vast
amounts of complex data. Such a case is encountered within a contemporary airport hall setting; passengers
roaming, information systems governing various functions, and data being generated and processed by
cameras, phones, sensors and other internet-of-things technology. This setting has considerable potential of
contributing to goals entertained by the CPS operators, such as airlines, airport operators/owners, technicians,
users and more. We model the airport setting as an instance of such a complex, data-intensive CPS where
multiple actors and data sources interact, and generalize a methodology to support it and other similar systems.
Furthermore, this paper instantiates the methodology and pipeline for predictive analytics for passengers flow,
as a characteristic manifestation of such systems requiring a tailored approach. Our methodology also draws
from DataOps principles, using multi-modal and real-life data to predict the underlying distribution of the
passenger flow on a flight level basis (improving existing day-level predictions), anticipating when and how
the passengers enter the airport and move through the check-in and baggage drop-off process. This allows to
plan airport resources more efficiently, while improving customer experience by avoiding passenger clumping
at check-in and security. We demonstrate results obtained over a case from a major international airport in
the Netherlands, improving up to 60% upon predictions of daily passenger flow currently in place.
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1 INTRODUCTION
Recent developments in information technology, have fostered a new generation of enterprise
applications that amalgamate powerful Internet technology with wireless networks, sensors, and,
mobile devices [15]. As a consequence, Cyber-Physical Systems (CPS) have emerged as non-
traditional systems characterized by a congruent interaction among people, physical facilities, and
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embedded sensors and computing resources. These systems generate vast amounts of data—also
referred to as Big Data—with a huge potential to contribute to key goals in industry such as
increased transparency, personalisation, and improved decision making [14]. However, the Big Data
- CPS tandem has only caught traction recently and remains still underdeveloped. The complexity
of CPS calls for systematic, proven yet innovative software and data engineering approaches—
collectively referred to as DataOps [8]—that fluidly and continuously assume the specific traits of
such systems [7]. This paper introduces a methodology to cater for on-the-fly analytics adopting
DataOps as the paradigm of choice, while leveraging Big Data stemming from CPS.

Our target domain is one of the most complex and influential industries to date – the air transport
industry. This reflects the intersection of CPS – think of the many sensors and devices active in
any airport hall – and the Big Data generated therein. On the one hand, the air transport industry
has experienced a consistent and sheer exponential growth over the past years. In 2017, a record of
4.1 billion passengers were transported world-wide. This growth will increase up to 5% per year
over the next 20 years [1], bringing along operational challenges for airlines and airports. On the
other hand, post-pandemic traveling requires novel insights regarding safety, security and health,
to evolve key operational processes as check-in and baggage drop-off for departing passengers.
Recent literature has modeled the passenger flow at airports using various data, such as Wi-Fi

indoor location [11; 16], security checkpoints information [19], or simulations [19]. Further, these
approaches predict passenger flow applying deep learning [16; 17], Long-Short Term Memory
networks [19], and Bayesian networks [11]. However, the state-of-practice entails informal forecasts
by experienced employees, using rule-based systems with little automated or data-driven support.
This stems from the Grounded Theory based in our in-site observations at the Europe’s third
busiest airport, and our interviews with managers, operators and staff from the airport and a major
worldwide airline company (detailed in Section 3). Current methods in the aviation business do not
exploit contemporary advancements, and neglect large volumes of sensor and device generated
data. This results in losses for airports, airlines and passengers. In particular, for airports’ landside
operations, an adequate prediction of the passenger flow is crucial to guarantee security, safety,
health, and overall wellness of passengers and airport staff. As an example, sometimes queues
become long and chaotic, due to badly provisioned resources: less staff than actually needed at
check in and security, poor spatial distribution, and little to no automated devices such as self
check-in, baggage drop-off, or biometric e-gates. Meanwhile, at a different time of the day, or
another sector of the airport, desk staff, security agents and technology remain idle.
The airport setting may be seen as a complex, data-intensive Cyber-Physical System (CPS), an

integration of people, computation, data, and physical processes. Embedded devices monitor and
control the physical processes, with feedback loops where physical processes affect computation and
vice versa. In particular, we focus on passenger flow analysis, as it demands a tailored approach based
on predictive analytics. Our methodology is based on DataOps and machine learning, combining
and exploiting passenger profiling and location data from multiple sources (sensors, Wi-Fi, mobile
apps), as input to a deep neural network, with the goal of predicting passenger flow more accurately.
Our approach works on a fine-grained flight level basis, while state-of-practice predictions are daily.
It also improves accuracy – predicting when, how, and how many passengers enter the airport and
move through the check-in and baggage drop-off process. The resulting data pipeline blends within
the CPS to then improve and optimize physical processes, closing the feedback loop.

Specifically, this paper features four main contributions:

(1) We model the target domain as a data-intensive CPS, featuring an interplay of multiple
data sources, people, physical aspects and cyber/computational aspects interacting within a
complex space.
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(2) We propose a DataOps pipeline and methodology to bridge the Cyber- and Physical world,
and explore bringing predictive analytics for the passenger flow forecasting problem.

(3) We instantiate our prediction pipeline in a prototype featuring four different predictive
models (viz.: the existing Baseline Model, Simple and Extended Linear Regression, and Neural
Networks).

(4) We evaluate predictive models within our pipeline over one year of real operational data
from a major airport and airline1, and demonstrate how our models substantially reduce
prediction error with regards to the one currently used in practice.

The remainder of this paper is structured as follows. Section 2 presents an overview of the
problem domain and its treatment as a CPS, along with the research questions. Section 3 then
describes the methodology followed to design the solution, featuring domain and requirements
analysis and data sources identification and analysis. Section 4 details data pipeline and predictive
models for passenger flow. Section 5 presents the evaluation of our approach with a real case of a
major airline and airport operations. Section 6 discusses results and limitations of our approach.
Section 7 presents related work, and finally Section 8 concludes the paper.

2 AIRPORT PASSENGER FLOW AS A CYBER-PHYSICAL SYSTEM
CPS embody physical and engineered systems whose operations are monitored, coordinated, con-
trolled and integrated by a computing and communication core [22]. By definition, CPS interact
with the physical world, and are often required to operate dependably, safely, securely, and effi-
ciently; modern CPS have to deal effectively with dynamic environments [33], and control their
changing behavior in a resilient fashion. Figure 1 illustrates an airport as a complex CPS, where
multiple actors and data sources interact with intertwined computational and physical aspects [34].
Essential features where the physical-digital domain ’interconnect’ including (i) digital sensing
that hooks into the physical realm and quantifies the physical world, such as location data from
roaming passengers; (ii) DataOps – i.e., data engineering, quality and integration – intertwines
through data the processes, goals and resources to perform analytics, and, (iii) actuation facilities
that enforce controller-provided changes in the physical world, such as actions that change the
passenger flow as a result of data-driven control decisions.

The physical aspect encompasses hardware, humans, rules, regulations, and business processes
associated with aircraft and air transport systems. Additionally, performance goals, such as safety,
capacity, efficiency, and aviation security, along with air transport system level performance metrics,
such as flight delays, passenger flow rates, and air traffic densities. Of course it also includes aircraft
management aspects and components [26], although those remain outside the scope of this work.
Conversely, computational aspects include mobile networking and information technology,

embedded in airport systems. This notably pertains to performance goals, such as computer-
software- and network- reliability and availability, information, computer and network security,
data and location privacy. This has an operational footprint in the physical world, since it typically
relies on additional physical components (e.g., networking equipment, mobile devices) and physical
resources to function.

2.1 Research questions
We have observed that predicting the passenger flow in an airport is a characteristic problem that
can be addressed from a new viewpoint – considering and modelling the airport as a complex CPS.
We pose the following Research Questions (RQs), following a model-predict-explain pattern [30]:

1Some data are omitted for confidentiality reasons.
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Fig. 1. Emerging Cyber-Physical System view from the airport setting, supported by a DataOps methodology
for predictive analytics.

RQ1: How to model the problem domain by means of DataOps and Cyber-Physical
Systems? First we need to understand the underlying business processes, composite system and
domain. To this end, we carried out stakeholder interviews and in-site observations, driven by
Grounded Theory as the systematic methodology to develop (and validate) the system model from
domain knowledge.

RQ2: How to predict passengers flow more accurately? Afterwards, we illustrate the appli-
cation of DataOps for CPS by designing a data pipeline for the problem of passenger flow prediction.
The pipeline captures and combines multi-modal data streams from different heterogeneous and
distributed sources to improve existing predictions in terms of accuracy, time and consistency. We
develop several predictive models for passenger arrival behavior, and experimentally validate our
proposal over a real case, comparing against the baseline model currently employed in practice.

RQ3: How to explain the prediction results in terms of the most important features?
Within predictive models, there is a trade-off between explainability and performance [25; 41; 42],
where more complex models such as neural networks usually outperform better interpretable
models such as linear regressions. We explain the prediction results in terms of the most relevant
features.

Figure 1 presents an overall view of our approach in the context of DataOps (bottom part), and
shows how data engineering, quality and integration help to address the problem at hand. In the
previous section we discussed how to model the problem as a complex CPS – Step 1 in Figure 1. In
the following section (Section 3 we perform a systematic domain analysis and identify the available
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relevant data sources – Step 2 in Figure 1. Then, we model a pipeline and architecture (Section 4) to
support predictions. Finally we evaluate a prototype of the approach, comparing against existing
predictions (Section 5) – Step 3 in Figure 1.

3 METHODOLOGY
We followed the Design Science Research Methodology (DSRM) [21], whose goal it is to develop
knowledge that the professionals of the domain – being data scientists, process owners, data
engineers and decision makers on airports and airlines – can use to design solutions for their field
problems. DSRM prescribes the following six key steps: (1) problem identification and motivation,
(2) definition of the objectives for a solution, (3) design and development, (4) demonstration, (5)
evaluation, and (6) communication.

Problem identification and motivation. Passengers arrive at distinct times prior to departure to
the airport, posing a challenge to act upon the crowds and potential congestion during a day of
operation. Lack of information regarding arrival times and service demands for decision makers
in the check-in process is the main underlying problem. This problem is two-edged: firstly, long
queues (at check-in, baggage drop, and security) and poor passenger experiences are undesirable;
secondly, they result in idling employees, sub-optimal usage of resources and associated costs.

Objective of the solution. Development of a DataOps methodology to provide more accurate
insights in the CPS at hand. We will focus on passenger flow at the departure section in an airport.
This means better insights in the number of passengers that enter the check-in process throughout
a day of operation, with the second-order goal to improve resource staff planning. The solution
should incorporate passenger-specific parameters that possibly affect their arrival time, and novel
data sources as model features, such as the travel motive (e.g., provided by a revenue management
department), as well as mobile device and sensor data with arrival behavior (e.g., provided by a
digital application team).

Design and development. We designed and developed a data pipeline that provides end-to-end
support for predicting passenger flow. Particularly, it extracts, merges and transforms data from
heterogeneous data sources throughout the CPS. Then, it feeds the curated and integrated data to a
predictive model and presents the results.

Demonstration. A proof-of-concept prototype fed with real data demonstrates the potential of
our approach. We implemented several predictive models to assess the feasibility, applicability and
accuracy of the approach. The prototype could be potentially deployed and integrated into the
processes of any airport or airline.

Evaluation. The proposed models are then compared showing substantial improvements against
an existing baseline, both at flight level and daily level. We show that the quality-interpretability
trade-off of machine learning models can be influenced in favor of more complex models by using
SHapley Additive exPlanations (SHAP [18]). SHAP explains predictions in terms of the contribution
of each feature to the final result, with the final goal of easy interpretation and actionability.

Communication. We communicate results in an agile manner, involving managers and decision-
makers in periodic feedback sessions. Results are presented on different levels of technical detail –
including, but not limited to, this paper – to achieve highly actionable and interpretable results.
For example, we calculated the Mean Absolute Error of the predictions in terms of number of
passengers every 15 minutes, which is meaningful for the domain experts.

The remainder of this section covers the methodology we followed to distill relevant requirements
from the problem domain. The broad set-up was inspired by the Cross Industry Standard Process
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Table 1. Key stakeholders interviewed for constructing the grounded theory (names and companies omitted
for confidentiality reasons).

Position Description

Airline R&D Manager Senior Manager of R&D prototyping environment within the Airline, in collaboration
with universities and research groups.

Airline Analyst Senior and junior users of the legacy passenger
prediction model

Functional Programmer
Airport Officer
Chief Data Officer Senior officer of the Operations Decision Support department at the Airline.
Tactical Planner Junior airline employee estimating the workload for a specific period.
Product Owner of ERP
tool

Semi-senior user of the Enterprise Resource Planning tool taking as input the graphs
made by a tactical planner and producing a plan that assigns workers to tasks.

Landside Manager (HR
Planner)

Senior manager, end-responsible for the departure hall, who decides on the amount of
personnel to hire for a specific day.

Operational Assignment
Planner (HR Planner)

Semi-senior employee that performs swaps of employees during a day of operation
when certain check-in desks are more busy than others.

Unit Manager Passenger
Flow Control

Senior manager, responsible for a specific unit within the Passenger Services department.
Main responsibility is to guarantee a (close-to) continuous flow of passengers.

Manager of Planning
Passage

Senior manager, directly responsible of the operational assignment employees (see
above).

Shiftleader Senior manager, direct responsible of the employees and operational part in the
departure hall.

Duty Manager Senior manager of the shift leaders, oversees a large part of the passenger operations.

for Data Mining Model (CRISP-DM [39]). Section 3.1 presents domain and requirements analysis
whilst Section 3.2 presents data sources analysis. These steps lay out a basis for a methodology that
can be followed to implement predictive analytics in a CPS within any organization.

3.1 Domain & Requirements Analysis
We follow a Grounded Theory (GT [4]) systematic approach to understand critical processes such
as passenger planning, staff scheduling and luggage handling. Constructing a GT starts with data
collection, usually in the form of observations and interviews, afterwards a more general theory
emerges from the analysis. First, we conducted unstructured interviews with key stakeholders,
and observation of their daily tasks, summarized in Table 1 (names and companies are omitted for
confidentiality reasons). These include but are not limited to HR planning and managers.
We discovered several attractive points both at landside and airside, including passenger flow

baggage processing and runway operations. All of these have typically dedicated operational teams
both at the airline and airport. In particular, operations in baggage handling and passenger flow
are highly correlated: modelling such processes as CPS paves the way for applying Data Science
methodologies and generate fitted prescriptive models.
All in all, focusing on passenger flow, the resulting theory is conceptualized in Figure 2. This

confirms that a smooth passenger flow is essential for the operations in the departure hall, customer
satisfaction and lately for safety and health of both passengers and employees.

Then, the planning process of ground agents was elicited, which is summarized in Figure 3. The
predictions and flight schedule are used as input for the tactical planning department to create
long-term plans and contract (external and flexible) resources. Next, the planning system generates
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Fig. 2. Summary of the results of the Grounded Theory (names, companies and numbers omitted for confi-
dentiality reasons). Legenda: NPS stands for Net Promoter Score, LC for Landside Coordinator.

a plan for a specific day with the number of personnel needed, two weeks in advance. Finally, the
operational assignment department assigns employees scheduled to work during a working day,
up to four days in advance. After that, no more changes can be done without incurring extra costs.
However, the following three problems occur:
(1) The number of passengers that are predicted is too large. In this case, agents end up being

idle resulting in resources over-provisioning – something not desirable, since the majority of
the workforce is externally hired at relatively expensive rates;

(2) Too low numbers of outbound passengers are predicted. In this case, agents at check-in desks
cannot cope with the demand – i.e., resources under-provisioning – causing queues and
passenger waiting times to increase. This negative effect on customer satisfaction directly
translates to a decrease in revenues and health, safety and security risks.

(3) Passengers enter the process at different times than initially anticipated. This incurs expensive
swaps between agents that have to be performed during ongoing daytime operations.

We followed up with airport operations stakeholders to obtain more supporting data, in particular
regarding arrival profiles of passengers. Figures 4a and 4b confirm that parameters such as the
number of days a passenger booked her ticket in advance and the length of stay of a passenger
influence the arrival behavior. In addition to passenger specific features, flight specific characteristics
influence passenger behavior. These gut feelings from the different stakeholders are confirmed by
data, summarized in Figures 4c and 4d. The hour of the day a flight leaves and its destination also
influence the arrival behavior of passengers. The identified problems can be mitigated by gaining
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Fig. 3. The current planning process of the departure hall.

insights in the type and number of passengers expected during specific times of the day, based on
the available data generated within the CPS.

(a) Arrival profiles. y-axis: probability. x-axis: time
prior to departure. Split: days booked in advance.

(b) Arrival profiles. y-axis: probability. x-axis: time
prior to departure. Split: length of stay.

(c) Arrival profiles. y-axis: probability. x-axis: time
prior to departure. Split: scheduled departure
time.

(d) Arrival profiles. Split: Continental vs Inter-
continental.

Fig. 4. Probabilities of arriving to the first touch point at the airport, based on different factors (actual values
omitted for confidentiality).

3.2 Data Sources and Analysis
To understand available information in the airport setting, first we interviewed managers and
senior employees both from the airline and airport operations teams. Then, we traced back the

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: May 2021.



DataOps for CPS: Passenger Flow Prediction 9

available data sources in use (or in lack). Two major categories emerged: (i) flight level and (ii)
passenger level data.

Flight level data. Those capture basic flight details, such as departure gate, type of traveler (e.g.,
transfer and intercontinental passengers) carrier, departure and arrival airport, and, configuration of
the plane. Secondary data pertains to time-related flight data, providing opportunities for analysis:
departure times, delay times, boarding start times, and actual and estimated turnaround times.
Furthermore, boarding intelligence data includes the number of passengers expected/present in
the flight, predicted boarding times, current boarding speed, and target boarding speed. Similarly,
baggage intelligence contains data on offloaded bags and the number of bags checked in for the
flight. Finally, booking information such as number of bookings, split by class and status (frequent
flyers, regrading, etc).

Passenger departure data. The most relevant are timestamps obtained from boarding pass
scans. The major ones record the first baggage drop-off time and the check-in time. These can be
superimposed with passenger profiles, such as cabin class, gender, nationality, check-in channel
type, length of stay, and number of passengers in the booking. Other fields within departure data are
passenger status, passenger-level predictions (if any), connection and security information. Finally,
travel motive is likely to influence passenger behaviour, as those travelling for business reasons
have a fixed (business) destination with fixed timing, whereas leisure passengers typically have
more fluid schedules. The actual formula used for this business-leisure segmentation is typically
confidential and internal to airlines, as it entails price segmentation – however, the main drivers
are destination and length of stay.

Passengers location. is critical to embark on (more) accurate prediction activities. However,
such information is not part of the in-place prediction models. This data could be obtained through
sensors within mobile devices – passengers that use airlines’ mobile applications may be tracked
by means of GPS and WiFi beacons. Indoor positioning literature has produced a vast number of
approaches for inferring positions and trajectories of devices roaming inside a spatial environment,
such as an airport [3; 35]. Those can be instantiated for this type of data source.

Customer satisfaction data. Airlines have customer satisfaction departments that periodically
gather such information through standardized passenger-oriented questionnaires. Their main goal
is to determine the Net Promoter Score (NPS) [24]; an industry-wide key performance indicator (KPI)
that measures how likely a passenger is to recommend the airline to others. Therefore, customer
satisfaction data encompasses background information on the passenger, such as personal details
and flight information. Then, the questionnaires split into departure, on board, and after flight
segments. Note that NPS is an airline-oriented KPI. For airport-oriented benchmarks, one could
use for example ASQ (Airport Service Quality)2, as another primary data source of passenger
satisfaction evaluation.
At this point, we can combine the insights gained by modeling the business domain as a CPS

(recall Figure 1) with the key processes and data sources identified and analyzed through Grounded
Theory. As an elaboration, Figure 5 presents the actual passenger flowchart which captures such
knowledge. The rectangles represent a touch point, where a passenger interacts with an employee
or a system. Aligned with self-service concepts, automated devices for the boarding procedures
– such as self-check-in devices and biometric e-gates – remarkably shorten the standby time of
passengers, and improve the overall flow. Diamonds represent splits in the passenger streams,
allowing to distinguish distinct cohorts of passengers, e.g., whether a passenger checked in at home

2https://aci.aero/customer-experience-asq/
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or at the airport, as this affects service needs. Paths and decision nodes in the flowchart can be
annotated with concrete values based on data for each case (omitted here due to confidentiality).

Fig. 5. The different passenger streams present in the departure hall.

4 DATA PIPELINE AND MODELS FOR PASSENGER FLOW PREDICTION
A data pipeline typically provide end-to-end support, from data identification, extraction, curation
to their integration, analysis and visualization [8]. Figure 6 depicts a generic, end-to-end architec-
ture of a DataOps pipeline that will cater for CPS-aware predictions. Notably, it can be dynamically
adapted to detect novel data sources on-the-fly, and accommodate (close-to) run-time data integra-
tion. We designed and developed a prototypical implementation of this pipeline architecture for
experimentation, exploration and validation in the context of this work.

In particular, the exploratory, prototypical DataOps pipeline for passenger flow prediction fuses
the data sources as described in Section 3.2 into one, unifying data lake. The data lake stores
conventional structured data such as, flight data and passenger data, along with data stemming
from mobile devices and sensor networks, e.g., passenger locations data tapping into mobile apps
and Wi-Fi. In this way, prediction models may exploit for example more accurate data about the
time between a passenger entering the departure hall and the scheduled time of departure.
In the next stage of the DataOps pipeline, the data sets are merged and curated, based on

syntactically and semantically reconciled passenger identifiers. Here one can apply relevant filters
(e.g., first-leg departure station) and data cleaning steps (e.g., handling missing or inconsistent
values), as preparation for analytics. This master data set may then be effectively used for training
the predictive models (last stage of the pipeline), make predictions, and finally visualize results.

4.1 Predictive Models
This section outlines the predictive analytics models adopted for CPS-enabled passenger forecasting.
We first introduce a baseline rule-based model before discussing two linear regression models and
a neural network.

Baseline Model. Deterministic and stochastic passenger prediction in the airline industry is
a well-established practice. During the domain analysis (see Section 2) we elicited a rule-based
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Fig. 6. Data pipeline for passengers flow prediction, integrating several data sources (actual names of the
components omitted for confidentiality)

model developed by a specific airline, currently in operation. This model serves as the baseline,
demonstrating what advanced CPS-based analytics can bring. The model comprises three key steps,
from booking predictions to passenger arrival predictions. First, the model predicts the amount
of passengers that will board each flight. This exploits data about available bookings for future
flights and historical bookings of the past three years. Second, it computes several booking trend
scenarios that determine the impact of increases/decreases of booking times. Finally, the model
selects the Best Booking Curve by minimizing the cost function: the difference between the actual
bookings and historical bookings. This is formalized in a formula that comprises the historical
booking curves, which is confidential. Sample prediction and booking curves are shown in Figure
7 (actual curves and numbers are omitted for confidentiality). The closer to departure, the more
bookings are made. The middle line represents the actual bookings made up until now. The dotted
line represents the predictions that the model makes for a given flight, following the booking curve
that lies closest to the current bookings.

Nowadays, static arrival profiles capture the ratio of passengers arriving at a given time before
a flight takes off. These profiles take into account the departure and destination of the flight, as
well as the travel class, among other indicators. These profiles are combined with scheduled flights,
resulting in a prediction of the number of passengers during a day of operation. These predicted
passengers are then distributed according to required services, such as check-in or baggage drop-off
at the airport – as shown in Figure 5. Currently, the distribution is based on historical averages.
The target variable of the model is the amount of passengers that need service during each 15-
minute period for a day. Upon these predictions, managers and HR planners generate schedules to
determine the staff (number and type) that should be allocated, and potentially hired externally for
that specific day.

Towards Dynamic Prediction. The baseline method as presented in Figure 7 is static, and can
be regarded as a rule-based model. It uses historical data and forecasts by senior employees to
generate the static profiles that determine the prediction. In contrast, we propose a CPS-enabled,
dynamic and data-driven methodology in which the target variable is predicted for each flight
on-the-fly, rather than on a deterministic, daily basis. Our predictions are dynamic rather than
static, as more features can be added to the model to test and improve its performance. The models
proposed in this work directly predict the amount of passengers to arrive in the departure hall
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Fig. 7. Sample Passenger predictions through the booking curve method (real curves and values are omitted
for confidentiality).

at 15-minute time intervals before the flight departure, and can then be aggregated when several
flights depart within the same period. We propose here three models: (i) simple linear regression,
(ii) extended linear regression, and, (iii) neural network. In the following, we briefly discuss these
three models along with their complexity and prediction performance.

Linear Regression. The first model is a simple linear regression, which works well for mapping
numeric inputs to numeric outputs, fitting an optimal correlation to the data points [37]. As its
main advantage, the linear regression model is easy to understand and extrapolate, but its strong
shortcoming is that it departs from the strong assumption that the features exhibit a (very close to)
linear relationship with the target variable. The simple model predicts the amount of passengers
to be expected in the departure hall every 15 minutes for each flight. Only the following basic
features are factored in: destination, scheduled time of departure, time interval. A
more complex model was also considered, adding more features. In particular, the extended model
builds on top on the simple linear regression one, by adding more generic and aggregate features,
including all features except the booking numbers.

Neural networks. Neural networks capture non-linear relationships between features and target
variables, by means of more complex prediction structures [40]. Neural networks consume the
same features as the extended linear regression, plus the actual booking numbers for different
query moments. As such, they include all 23 features from the four different data sources. Different
neural network architectures can yield different results. We investigated several configurations
to determine the right trade-off between several architecture decisions – e.g., base architecture
such as Deep Neural Network (DNN) or Long-Short Term Memory (LSTM), internal layer count,
neurons count, etc. These experiments determined that a three-layer DNN was the best trade-off
between accuracy and performance with respect to available infrastructure at the deployment
site (which is on premise rather than cloud). A model complex enough to capture the structure of
the data was required, but without becoming a time bottleneck that would take too long to make
predictions. The relatively straightforward nature of the data does not require many layers, but
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only enough to capture the complex relationships between the features. Specifically, the input
layer contains 23 neurons, corresponding to the number of trainable features. Then, three fully
connected hidden layers with varying dimensions are added. We also experimented with three
different shapes, given by the amount of neurons per layer: (i), a network with equal amount of
neurons per layer, (ii) a diamond-shaped structure with more neurons in the middle hidden layer,
and (iii) a decreasing amount of neurons per layer – as shown in Figure 8. In addition to the shapes
of the layers, we experimented with the ratio of neurons between each layer: 2x or 4x number of
neurons more/less between consecutive layer. All layers implement a ReLu (Rectified Linear Unit)
activation function [6]. ReLu is a linear function that outputs the input directly if it is positive,
otherwise zero. It has become the default activation function for many types of neural networks
because a model that uses it is easier to train and often achieves better performance than sigmoid
(S-shaped) functions [13].

The lowest number of neurons in the intermediate layers was set on 64. Then the amount of
neurons was increased with a factor of 2 or 4. The output layer contains a linear activation function
and one neuron, to predict the amount of passengers directly. The loss function of the model is
optimized by the Adam algorithm [12]. We used a default batch size of 256 input samples per
time (before the model is updated) and 500 epochs (training steps). An early stopping method was
configured, to automatically stop training after the validation loss had not been improved for three
training epochs. This allowed us to save training time and computational resources.
Six models were evaluated: equal shape (64 or 128 neurons), diamond shape (2x or 4x neuron

factor per layer) and decreasing shape (2x or 4x less neurons per layer); at five relevant query
moments: 14, 7 and 4 days, 24 hrs and 2 hrs in advance. This generates a total of 30 experimental
configurations (model, query-time). In the following, we report on the results of evaluating the
above-explained prediction models and configurations with multi-sourced data from more than
one year of operations of a major airline at a major airport.

Fig. 8. Three different neural network architectures validated for the prototype.

5 EVALUATION
In this section, we evaluate the DataOps pipeline and CPS-enabled prediction models introduced
above to a real case study on a major airline. Specifically, we assess the accuracy with regards to
a baseline model currently used in the aviation industry. Accuracy will be measured in terms of
the error, or the difference between actual and predicted number of passengers. To this end, we
trained the models with more tha one year of operations data from the airline. This data was not
restricted to conventional structured repositories, but also included CPS data such as GPS, sensors
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and devices. First, we introduce the datasets and experimental setup. Subsequently, we compare
the different models in terms of prediction error. Finally, we discuss the major contributions and
limitations of our methodology.

5.1 Experimental Data and Configuration
We populated the data sources that have been introduced in Section 3.2; the resulting dataset we
exploit is in the order of millions of data points, and a time span of 16 months. Due to privacy
reasons regarding the companies involved, we cannot disclose the dataset. The key features in
the data can broadly be divided into three categories: generic features, time-based aggregates,
and flight-based aggregates. We further generate two types of aggregated, auxiliary features. In
particular, for each flight (ID), the mean values of the aggregate features are computed. Similarly,
the mean values of the aggregate features are computed for 15-minute time brackets prior to a
flight departure.

The goal of the models is to dynamically predict the amount of passengers that need service in
the departure hall processes. Services in this process can be two-fold: (i) check-in at the airport and
(ii) baggage drop-off. To model passenger arrival behavior in the departure hall, so-called arrival
profiles are created. An arrival profile, shown in Figure 9, is the distribution of passengers that
checks-in and/or drops off their baggage at a certain number of minutes prior to flight departure. By
considering both check-in and baggage drop-off time the coverage of the target variable increases,
as shown in Figure 10. Hence, the target variable defined in this experiments is the amount of
passengers that need service in a 15-minute time interval for each flight.

Fig. 9. Arrival profile. Target: baggage drop-off
and airport check-in time (values omitted for con-
fidentiality).

Fig. 10. Coverage of the two target variables over
the whole set of passengers (values changed for
confidentiality).

Figure 11 illustrates the daily number and distribution of relevant passengers in the data set. The
upper line represents the total, the middle line represents those that need service, and the bottom
line designates the ones tracked by the mobile app. Note that the latter are only available from July
2019 as CPS-related data collection and analysis from the mobile app is part of the contributions of
this work, and consequently not considered before for the baseline model. All models have been
trained on one year of training data, from 01-05-2018 to 30-04-2019. The test data for all models
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encompasses from 01-05-2019 to 10-09-2019. The five relevant query moments include 14 days, 7
days, 4 days, 24 hours, and 2 hours prior to departure.

Fig. 11. Daily variation of passengers in the dataset (values and mobile app name omitted for confidentiality).

The performance of all proposed models was compared by the Mean Square Error (MSE) metric.
MSE measures the average of the squares of the errors between the predicted and actual values and
penalizes outliers, i.e., big deviations of the predictions from the actual data [38]. Outliers represent
moments when current predictions fail excessively, harming the operations processes.

5.2 Results
We first compare the different combinations of neural network architectures and query times, to
find and select the best performing one – as reported in Table 2. Then the selected neural network
is compared against the other models on flight level and daily level. For doing so, we use the
predictions obtained for query moment 4 days in advance. This is the most representative moment,
since personnel assignment can be adjusted up to four days in advance – recall Section 3.1.

Table 2. Mean Square Error (MSE) for test data on different neural network models and query moments. Best
results in bold.

Query moment
14 days 7 days 4 days 24 hours 2 hours

64 neurons per layer 11.83 11.06 11.36 11.19 11.07
128 neurons per layer 11.66 11.48 11.09 11.36 11.99
Diamond-shaped network: 2x factor 11.09 11.41 11.08 11.03 11.3
Diamond-shaped network: 4x factor 11.2 11.14 11.22 11.23 10.82
Decreasing no. of neurons: 2x factor 11.32 11.31 11.3 11.05 11.57
Decreasing no. of neurons: 4x factor 11.63 11.57 11.29 11.2 11.35

Table 2 compares the different permutations correlating neural network models versus query
timing (varying between 14 days and 2 hours). The diamond model with a 2x neurons difference
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per layer performs best for the query moment of 4 days ahead – also for 14 days and 24 hours. As
such, the results of this model will be further compared and analyzed against the other models
on different levels of granularity. The training and validation values across epochs for the best
performing neural network is visualized in Figure 12. Note that the test loss is stable and train loss
keeps decreasing, which indicates no over-/under-fitting.

Fig. 12. Training and validation loss of the best performing neural network with query moment 4 days in
advance.

Flight-level results. The results of the best performing neural network, simple linear regression,
and extended linear regression are presented in Table 3a. The models are evaluated on the MSE
metric (defined in previous section), and also the Kolmogorov-Smirnov test (KS), a non-parametric
test to compare a sample with a reference probability distribution. It measures how well the
predicted distribution suits the underlying actual distribution [23]. That is, in Figure 13a, the fit
between the lines (predictions) and the bars (actual distribution) through the entire test period. Note
that the neural network captures the distribution much better than the linear models, confirming
the insights from Table 3a.

Day-level results. In addition to the flight level results presented before, Figure 13b shows the
daily aggregate predictions as used during airport operation. The dark line represents the actual
amount of passengers that need service. The other lines represent predictions of our CPS-enabled
model predictions and the baseline (legacy prediction). Note that the figure shows the averaged daily
predictions for the entire test period. To compare the models against the baseline, the Mean Absolute
Error (MAE) of the predictions was evaluated over the entire test period. MAE is straightforward
to calculate and interpret, by summing the magnitudes (absolute values) of the errors to obtain
the ‘total error’ and then dividing by the number of observations [38]. This metric reflects model
accuracy, representing the difference between predicted and actual passengers every 15minutes. The
MAE is particularly fitting to communicate to the stakeholders in operations (who are non-experts)
how well the models perform and the practical implications therein [38].
These results indicate that all three proposed models outperform the baseline, and that the

neural network is the best performing one. It has a mean absolute error of 15.81, suggesting that it
predicts around 16 passengers too many or too few per each 15 minutes period, throughout a day
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(a) Flight-level.

(b) Day-level.

Fig. 13. Predictions on test data. (a) flight-level aggregations and (b) day-level aggregations (actual values
omitted for confidentiality).

of operation. Considering that the baseline error was 25 passengers every 15 minutes, this means a
relative error reduction of 40%. Considering around 8000 passengers/hour (2000 every 15 minutes),
this represents a reduction of the absolute error from .12 to .7 of the total number of passengers
(actual numbers are omitted for confidentiality).

Table 3. Overview of the results of all models (best results in bold).

Model MSE KS
Simple linear regression 19.31 0.45
Extended linear regression 16.48 0.33
Neural network 11.08 0.34

(a) Mean square error (in number of passengers) on a
flight level basis.

Model MAE
Baseline 24.36
Simple linear regression 22.02
Extended linear regression 19.19
Neural network 15.81

(b) Mean absolute error (in number of passengers) on
a daily level basis.
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6 DISCUSSION
This section first recaps the research questions introduced in Section 2, discussing what we have
been able to resolve with our CPS-enabled, DataOps-driven methodology throughout the paper;
subsequently, we outline the key limitations of our methodology.

RQ1.How tomodel the problemdomain as an exemplary instance ofCPS andBigData?
Section 3 elaborated on the airport setting as a complex Cyber-Physical System. This allows

to capture the complex interactions between multiple actors such as managers, human resource
planners, shiftl-leaders and desk agents, both from the airlines and airport operations, and pas-
sengers themselves; but also data sources ranging from structured and static, to unstructured and
streaming in nature. These operate and interact with intertwined computational and physical
artifacts, including mobile phones/apps, monitors, sensor networks, self check-in devices and
biometric e-gates and office automation systems.

We then focused particularly on the passengers flow problem, as it is a recurring and representa-
tive problem in CPSs such as airport systems. We inferred the existing end-to-end planning process
stemming from interviews and observations by means of the application of Grounded Theory in
conjunction with a Data Science Research Methodology, which led to a thorough understanding of
the underlying domain. From a DataOps perspective, we also identified relevant data parameters
and their origin, used during the legacy planning process, such as destination and departure time
at flight level and baggage and check-in time at passenger level. We identified that the legacy
processes still in place do not exploit contemporary advancements in the field, and neglect large
volumes of sensor- and device- generated multivariate data. As a result, airports, airlines and
passengers miss on the potential that advanced techniques can bring, generating extra costs for
airlines and airport operators, reducing customer satisfaction, and increasing risks for security,
safety and health of passengers and staff. As a concrete contribution to the existing planning
process, we brought novel data sources and parameters, captured from mobile devices and sensors
– e.g., location data stemming from mobile applications – and connected those to a data pipeline
and data lake end-points, for further use in predictions.

RQ2: How to predict passengers flow more accurately? We designed and implemented an
end-to-end data pipeline for departing passenger predictions, as presented in Section 4. This pipeline
provides effective support from data sources through data preparation, cu ration, transformation
and fusion, to prediction, real-time analytics and visualization. In addition, we have explored and
calibrated several techniques with regards to predictive analytics that outperform the classical
approaches for modelling arrival behavior of passengers.
In particular, we conducted a comparative analysis between three different prediction models,

ranging from simple/extended linear regression to neural networks. We optimized the accuracy of
the neural networks experimenting with up to 30 different shapes and configurations. To effectively
evaluate their performance, we compared them against existing day-level predictions as a baseline.
From the results presented in Section 5, the performance of the neural network approach is superior
to all other models, both on flight and day level, reducing error up to 60%, from 25 to 15 passengers
every 15 minutes interval. The prediction obtained in the amount of passengers is better than the
baseline at all relevant query times. The closer one gets to the moment of departure, the better
the model performs, thanks to the multiple data sources considered. This allows to plan airport
resources more efficiently, while improving customer experience by avoiding passengers clumping
at check-in and security.
However, there is certainly a trade-off in predictive models between explainability and perfor-

mance, where complex models such as neural networks usually outperform more interpretable
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models such as linear regressions, as demonstrated by results in Section 5. Neural networks are
architectures featuring several hidden layers. As these become more complex and introduce in-
creased nonlinearity, their structure become less transparent and it is harder to understand what
operations or input information lead to specific decisions [29]. However, it is critical to understand,
trust, and explain the rationale behind decisions. To support this, it is possible to increase model
interpretability for former "black-box" models – as addressed in the following.

RQ3: How to explain the prediction results in terms of the considered features?
Explaining a model means providing extra qualitative information about why the model reached

to a specific decision regarding the input features [29]. In an effort to explain black-box deep-
learning models, Lundberg and Lee proposed SHapley Additive exPlanations (SHAP [18]). The
goal of SHAP is to explain predictions in terms of the contribution of each feature. Shapley values
tell how to fairly distribute prediction among features, helping to interpret how a neural network
arrived to a certain prediction. The total set of features we analyze counts over 1̃50 quantities
and reflects multi-dimensional sensors data arranged around the cyber-physical system including,
among others: (a) traffic sensors across the hall, (b) sensors in the passengers’ mobile device, (c)
sensors mounted on the entrance door, (d) online databases (e.g., for timestamps, weather, day
of the week, etc.). The feature importance illustrated in Figure 14 shows the top 14 features with
statistical significance. Features reported in the figure reflect:
(1) Left-Bound-Drop-off. These are passengers who have already checked in electronically

and required baggage drop-off only; they typically transit in the hall for a short amount of
time and are normally directly bound to the drop-off kiosk.

(2) Flight Days Booked in Advance. This is the time delta between the day of the flight and
the day a passenger booked the ticket for that flight.

(3) Scheduled Time of Departure (STD). This reflects the time of the day for the flight depar-
ture, which may affect the passengers arrival – e.g., for early flights it tends to be closer to
departure.

(4) Time App Difference. This reflects the mean time delta between the STD and the moment
in which a passenger entered the departure hall, captured through the mobile app GPS data.

(5) Total Economy-Class Bookings. This quantity identifies how many passengers are cur-
rently booked to travel economy-class and are circulating in the hallway.

(6) Weekday. This is an indicator (between 1-7) that reflects the day of the week, set to start at
1 == “Monday".

(7) Days of Ahead-Booking. This quantity identifies the mean number of days of ahead-
booking (i.e., how many days before the flight was the flight booked) for passengers currently
across the hall.

(8) Flight Length of Stay. This quantity identifies the mean of how many days are passengers
bound to stay in the location they are travelling to.

(9) Flight PAX in Booking. This quantity identifies how many people are bundled together in
the same group and flying together.

(10) Flight App Difference. This reflects the mean time delta between the STD and the moment
in which a passenger entered the departure hall, captured through the mobile app GPS data,
averaged over the destination of the flight.

(11) Time Length of Stay. This quantity identifies the mean of how many days are passengers
bound to stay in the location they are travelling to, averaged over the 15-minute time bracket
prior to departure.

(12) Month. This identifies the month of the year in the current datapoint, retrieved according to
the world clock.
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(13) Time PAX in Booking. This quantity identifies how many people are bundled together in
the same booking, averaged over the 15-minute time bracket prior to departure.

(14) Total Business Class Bookings. This quantity reflects the total amount of business class
ticketed passengers currently roaming the hall.

The left bound drop-off of the time interval is the most important feature, affecting the predicted
number of passengers by 7% on average. Also, the mean days booked in advance and scheduled
time of departure of a flight turn out to be important features in this model. In addition, locations
data is statistically significant, changing the predicted value by 3̃%. The feature importance provides
a first direction in explaining the model. For more informative insights, Figure 15, combines feature
importance with positive/negative feature effects. Each point on the summary plot is a Shapley value
for a feature and an instance. The features are ordered according to their statistical significance.
Observations on the left of the vertical line indicate a negative effect on the target variable, whereas
observations on the right indicate a positive effect. We note a negative effect for most observations
in the number of days booked in advance, and a mostly positive effect for the locations data from
the mobile app. One should note, however, that all effects describe the model behavior and are not
necessarily causal.

Fig. 14. SHAP feature importance measured as mean absolute Shapley values.

6.1 Limitations and Future Work
Here we report the main limitations in our approach and how these will be addressed in future
work. The CPS-enabled prediction model grounded on the DataOps methodology as presented,
can be further optimized to increase accuracy. For example, by including other data features to
assess and predict flight delays such as weather conditions, traceable from API sources of weather
information available online. Although not considered in this work weather as a delay component
is partially accounted in the historical data, within seasonal and monthly average delays. An explicit
treatment of weather conditions is a matter of future work. From a technical standpoint, tuning the
hyper-parameters of the neural network and experimenting with the architecture of the network,
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Fig. 15. SHAP summary plot with positive and negative influence per feature.

such as the number of layers and the number of neurons per layer. Also, directly predicting the
distribution instead of 15-minute brackets may improve the current model.

Another possible improvement towards adoption of the model is to fit it for the specific use case
of the departure hall. Specifically, the target variable can be split into passengers that have a bag
drop-off at the airport and passengers that need to check-in at the airport. With this additional
split, the agents can be directly scheduled at the desks in which they are needed most. In addition,
the model can be extended by including data on partner airlines which share the same ground
services facilities. Needless to say, this implies a tradeoff with the generalizability of the approach
that should be carefully considered.

The quality of data used for prediction can be further analyzed and improved, e.g., by semantically
enriching the data. For example, the arrival profile presented in Figure 9 suggests a distribution
with two peaks, in which the second (smaller) peak is not yet addressed. The assumption made in
the scope of this paper is that this group exists – in the sense that a small portion of the passengers
arrives rather close to the flight departure. It can be, however, that this represents a group of
passengers whose flight was delayed. In addition, the amount and diversity of data at hand could
be further extended to improve validity, e.g., by including open data or social media data. Our
experimental data represented one year of training data and four months of test data. This should
be sufficient for capturing the different types of seasonality, but a longer period (a longitudinal
study) would build more confidence in the results.
The consideration of the airport as a CPS for governance – a central tenet of the present

paper – although not immediately obvious to the evaluation goals has an indirect effect to the
metrics and features employed. The overall setting consists of decision-makers (i.e., stakeholders or
airline operators), users (i.e., passengers) along with user-facing devices (i.e., sensors, mobile/web
applications). Additionally, its computational aspect includes overall management, prediction
and analytics functionalities, which constitute monitoring and control activities. Recall that (i)
the processes identified through requirements elicitation upon the business domain and (ii) data
sources within the system are consolidated in the passenger flow chart illustrated in Fig. 5. The
departure hall – within the physical realm – is central to passenger flow. As such, flow within the
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hall distills available knowledge by making explicit the interactions of passengers with various
system endpoints, which are essentially the interfaces of the CPS between the physical and the
computational world. Furthermore, beyond the aforementioned purely technical aspects, it shall
be remarked that the governance dimension in our endeavour focused primarily on end-user
governance goals (e.g., increasing customer service times and levels, etc.) but several stringent
requirements (especially so in the air travel service segment) remain explicitly unaddressed in our
formalisation and approach.

More specifically, the aforementioned service segment typically requires very stringent privacy
and security aspects to be addressed by any deployable solution—either featuring AI software or
otherwise—which meets and processes end-user or observable circumstantial data. Although in the
scope of this paper—and the deployed AI-software we prototyped as part of this study—we leave
such aspects to be addressed by related work either in cybersecurity for CPS (e.g., see the overviews
in [2; 28]) or privacy-by-design for data-intensive computing (e.g., see [9; 31; 32]) We highlight that
both security and privacy issues and challenges present in the case-study were deliberately not
addressed in the modelling exercise since they could indeed compromise its applicability altogether.
Consider, for example, even the simple impossibility of using open customer data without explicit
consent might make any predictive model inapplicable for passenger hall traffic prediction. In
the future, research should be applied to automated and anti-tampering anonymization and de-
anonymization middleware able to refine data-intensive pipelines such as the one we proposed and
evaluated in this paper so as to address the aforementioned security and privacy requirements.

Finally, we acknowledge that the experiment is limited to data from one airport and airline, con-
sidering that regulations, passenger characteristics, airport environments or boarding procedures
may differ among countries and thus results may not be directly generalizable. Nevertheless, these
can be easily extrapolated for any international airport, and also adjusted to fit other scenarios
around the world.

7 RELATEDWORK
DataOps entails a set of practices, processes and technologies that combines an integrated and
process-oriented perspective on data with automation and methods from agile software engineering
to improve quality, speed, and collaboration and promote a culture of continuous improvement [7].
A DataOps methodology combines and interconnects data engineering, data integration, data
quality, and data security/privacy [20] to deliver data from its source to the person, system, or
application that can turn it into business value [8].
Modeling airports and their data flows as Cyber-Physical Systems has been present in the

literature to address safety and performance of overall air transportation systems under increased
throughput. For example, conflict detection and resolution in surface traffic, bymeans of information
flow analysis [27]. Tight cyber–physical integration, within aircraft and between aircraft and off-
board systems, warrant a surgical consideration of cyber–physical interactions and potential
performance risks from cyber and physical threats, calling for a foundational understanding of
properties, behavior, and performance of aviation cyber–physical integration [26]. Rich integration
leads to improved quality and performance of gate-to-gate flight of each individual aircraft and
travel experience of each individual passenger and crew. Undoubtedly, Airports and airlines can
benefit from the insights and solutions of modeling key processes as CPS.

Recent literature models the passenger flow at airports using various data, such as Wi-Fi indoor
location [11; 16], security checkpoints information [19], and/or simulations [5; 19]. Our approach
leverages more data sources and features (e.g., mobile app data), and continuous predictive analytics,
offering a dynamic model that can be fine-tuned over time. Additionally, some approaches use
applied machine learning to predict passenger flow [10], e.g., by means of deep learning [16; 17],
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Long-Short Term Memory networks [19], and Bayesian networks [11]. Similarly, our approach
accounts a high number and variety of features to solve a related problem. Moreover, we also model
the airport and passenger flow as a CPS, and the construction and consolidation of the overall data
pipeline, gaining valuable insights in the process.

8 CONCLUSIONS
This work introduces a CPS-enabled analytics methodology and data pipeline for bringing continu-
ous predictive analytics to airlines and airports operations. The first part of the methodology is
based on Design Science Research in tandem with Grounded Theory to understand and conceptual-
ize the business context and domain as a Cyber-Physical System. In particular, for our scenario we
interviewed several key stakeholders and observed their daily tasks to boil down the key processes
and interactions in the passengers flow and resource allocation at airports. The resulting CPS is
complex, unpredictable and dynamic as it features several actors and intertwined computation and
physical aspects, while exhibiting emergent behavior. As such, our approach targets the critical
system requirements phase and illustrates how to reason on requirements and data sources in
the early stages of design. Additionally, such high-level reasoning can aid in analysis of system
behavior after deployment, used for bootstrapping corrective actions.
We constructed a data pipeline, following the DataOps approach to deliver business value [36].

In particular, we exemplified how to capture, extract and combine data from at least four different
sources, including three pre-existing ones – flight level data, passenger level data, and customer
satisfaction data – as well as a novel data source stemming from a mobile app. Data governance is
in place to enact data access controls in support of a “data marketplace”. Then, data scientists can
build and publish prediction models, often through experimentation and iteration. Our data pipeline
consolidates the information for analysis using novel predictive models, capable of performing
predictions at a flight-level basis, instead of existing day-level basis ones. Furthermore, DevOps
teams build end-to-end pipelines that include and deploy models in the application logic. We
illustrated this by means of a prototype of the CPS-enabled data pipeline and data lake, and
empirically explored three predictive models: simple and extended linear regression, and neural
networks, with up to 23 input features and 30 different configurations and query times.We compared
our models against the existing baseline, showing substantial improvements. The best performing
model is a neural network, with up to 60% reduction of the error in terms of amount of passengers
predicted for every 15 minutes slot. Moreover, we explain the results of the neural network in terms
of the most important features by means of SHAP, showing high importance of the novel features
stemming from the mobile app.

As practical implications, having more accurate predictions provides business value at different,
critical points. In the resource planning axis, this allows to plan airport resources more efficiently.
Better insights in passenger peaks allow to employ enough agents, reducing waiting times and
increasing flow throughout the airport. Second, better insight in the troughs allows to employ less
agents during those moments. This obviously aids reducing costs. From the Grounded Theory,
a better planning could result in a 10% reduction in temporary workforce, resulting in a yearly
saving of up to 1 million euros (actual number not revealed for confidentiality) only for one airline
and airport. Finally and in a general context, this proposal improves passengers experience, safety
and health. Avoiding passengers’ clumping at check-in desks and security checks reduces close
contacts and helps social distancing, something vital for overall safety and public health especially
under new regulations for post-pandemic travel.
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