Dependable Resource Coordination
on the Edge at Runtime

Christos Tsigkanos, Ilir Murturi and Schahram Dustdar
Distributed Systems Group
TU Wien
Vienna, Austria

Abstract—Software components within heterogeneous devices
of Internet of Things (IoT) systems, use resources representing
various computational capabilities, including sensing or actuation
endpoints. However, components do not live in isolation and
must be able to coordinate with others to fulfill their goals.
Satisfaction of requirements —capturing their goals— must persist
in environments that are changing, unpredictable, and potentially
unknown at system design time. Edge computers placed near
IoT devices can be leveraged for this sort of control — providing
resource management for end devices within their operational
context. We propose a methodology and technical framework
for engineering resource coordination at runtime, tailored for
the decentralized, pervasive systems of today. Our approach
represents a paradigm shift in marrying distributed systems and
formal aspects of software engineering. We adopt goal modeling
to capture objectives within the system and use bounded model
checking as the foundational technique to compute coordination
plans which satisfy device goals. This occurs opportunistically
at runtime without any knowledge about the operational status
or presence of resources, but always in accordance to the
edge’s own goals. Our technical framework exhibits dependability
guarantees regarding optimality and correctness of generated
plans. We evaluate resource coordination performance and its
feasibility on low-powered ARM-based edge devices.

Index Terms—Edge Computing, Software Engineering, De-
pendable Systems, Model Checking, Internet of Things

I. INTRODUCTION

Internet of Things (IoT) systems integrate heterogeneous de-
vices, computing infrastructure, and cloud services with their
ambient environments. New challenges and opportunities arise
as rapidly growing cloud computing, mobile devices, sensors,
and networks constitute larger ensembles of systems [1], [2]. A
neighborhood for example, may be saturated with hundreds of
networked devices providing information to roaming humans
or other devices, by combining information as they become
available in the city’s environment. Dynamic resource manage-
ment [3] is essential to achieving such pervasive behavior — it
enables devices and services making up the Internet of Things
to perceive available resources, configure them and utilize
them. Such resources may refer to computational, sensing
or other types of domain-specific resources that software-
intensive devices may take advantage of to achieve their goals.

IoT applications differ in type and complexity, with multiple
system components deployed in diverse domains and envi-
ronments which are often not known beforehand. Moreover,
software components within devices making up the system,
do not live in isolation and must be able to coordinate with

others to fulfill their objectives as well as overall system-wide
requirements [4]. Correct satisfaction of requirements must
persist in environments that are changing, unpredictable, and
potentially unknown at system design time [5], [6].

Resources within IoT applications may represent various
computational capabilities, including sensing or actuation end-
points, storage or processing facilities. Often, those are archi-
tecturally abstracted as software services [7], referring to some
functionality that different client IoT devices can reuse for
different purposes. The concept of an IoT resource amounts to
blurring the lines between software services and sensor values
or actuation endpoints.

We are not concerned with mechanisms of access, their
interfaces or policies here, but with the fact that different inter-
dependent resources may be required to fulfill some objective
of a software component residing in a device. Dependencies
may be in the form of certain constraints — a resource to
be operationalized may require the output of another, but
its availability makes other resources additionally available.
Dependencies may be specified in an implementation- and
language-agnostic manner, and annotated over arbitrary re-
sources that an application may use. We adopt an everything-
as-a-service (XaaS) abstraction to uniformly represent physical
things, hardware and software resources as microservices,
irrespective of their specific nature [8]-[10].

Recent developments within distributed systems have led to
the architectural placement of a computing entity closer to the
network edge, close to IoT end-devices, thus better satisfying
system-wide goals such as high availability, performance, or
privacy [11]. Such edge entities may offer computation and
control facilities to local devices [12]. Within a neighborhood
for example, IoT devices may utilize resources of a local
edge node benefiting from high connectivity to it as well
as its awareness of other IoT devices in its scope. This
allows an edge device to act as a mediator among devices,
locally coordinating them in order to satisfy their resource
needs. We build on the foundational edge concept where
edge computers are placed near IoT devices, within their
local administrative domain or wireless network. We further
advocate decentralization, as the edge is a first-class entity in
our approach, responsible for IoT devices within its scope but
bearing no dependencies for coordination to other edge nodes
or the cloud.

We recognize that edge computing means different things
to different people; we identify an edge node as a low-

powered computer part of an IoT deployment. The edge node
is in the scope of connected devices whose software stacks
are limited. Although the method and framework proposed
is hardware-architecture-free, we consider low-powered edge
devices which are ARM-based, and resource constrained IoT
devices such as microcontrollers populating the system as is
the case in deployments of networked actuators and sensors
e.g., in smart cities. We treat communication and operational
aspects as orthogonal to our approach; we are concerned with
the core mechanisms of coordination at runtime.

To this end, we propose a methodology and technical
framework for engineering resource coordination for the edge-
enabled IoT. Our coordination approach targets decentralized
edge systems, where IoT devices advertise and request re-
sources at their local edge node. If an IoT device requests
an edge node for a resource which cannot be trivially ob-
tained from resources readily available, some combination of
resources of other IoT devices must be derived. For example,
computing a local weather forecast in a smart agriculture set-
ting may require temperature readings from available sensors
across a crop field. To solve this, coordination on the part of
the edge node computes a plan, which the requesting device
can use to fulfill its objective, in accordance to the edge’s
goals. Thus, resources are coordinated regionally within the
local 10T scope of the edge node. Overall, system-wide goals
may further be affected by coordination occurring in a scope.
Our concrete contributions are as follows.

¢ We provide a methodology where semantic annotations
are specified at design time to arbitrary resources within
an IoT system. Those record what a resource requires to
be operational, and what effects its potential operational-
ization has on other resources or context values. Subse-
quently, objectives of entities within the IoT system are
specified — from a requirements engineering perspective,
our approach is goal-driven since we use edge and device
goals to drive coordination of resources at runtime.

o When the IoT system is operational, a SAT/SMT [13]
solver situated on a low-powered edge device, leverages
bounded model checking techniques [14] at runtime to
fulfill objectives of local IoT devices by coordinating
available resources in its scope based on the currently
active context.

We instrument coordination as a form of service composi-
tion [15], but tailored for the edge-enabled IoT. While building
upon the significant state of the art of traditional service
composition, our resource coordination technique differs for
three key reasons; (i) we consider elementary IoT resources
as microservices — instead of using a service description lan-
guage [16]-[18], we adopt a lightweight approach suitable for
microservices inherent in modern IoT architectures and appli-
cations; (ii) we allow quantifiers and integer linear arithmetic
for specification due to the IoT domain, and (iii) we target
low-powered ARM-based edge computers for deployment.
Our approach represents a paradigm shift in marrying dis-
tributed systems and formal aspects of software engineering.
Specifically, we adopt goal modeling to model objectives
within IoT. We use bounded model checking [19] as the foun-

dational technique to compute coordination plans which satisfy
device, edge and system goals. This occurs opportunistically
at runtime, without any knowledge about the operational
status of the system or which resources are present at the
system’s design time. The coordination facilities we provide
are dependable because if there is a solution to a resource
coordination problem, the technique we utilize will provide a
plan for it, and the plan will be optimal. This is in contrast
to other approaches utilizing other techniques such as based
on Al [20]-[22]. We acknowledge that the technique we
adopt is computationally expensive, but offers dependability
guarantees. Thus, our evaluation targets resource coordination
performance and its feasibility on low-powered ARM-based
edge devices.

The rest of the paper is structured as follows. After a
motivating example used throughout the paper in Section II,
Section III gives an overview of our approach within edge
computing. Section IV describes key modeling and method-
ological aspects, goal and modeling of which are expanded on
Section V. Subsequently, Section VI illustrates bounded model
checking for resource coordination. Section VII provides an
assessment of the feasibility and performance of the proposed
approach; related work is considered in Section VIII, and
Section IX concludes the paper.

II. RUNNING EXAMPLE

As a simple scenario serving as a running example of an
IoT system throughout the paper, consider a modern smart
city containing various neighborhoods and parks where var-
ious devices are embedded providing smart functionalities.
Naturally, waste bins are located in neighborhoods as well as
parks, and traffic lights may be deployed to facilitate municipal
vehicles; ambulances or recycling trucks should be presented
with green traffic lights when applicable. Moreover, irrigation
facilities situated in parks should automatically be operational
when the detected soil moisture is below a threshold of 20%.
However, this should not occur when the park is crowded with
visitors. Besides ensuring municipal vehicle green lights, the
city management imposes other constraints as well, regarding
the overall system’s operation. In order to minimize citizen
disruption, irrigation and waste collection in parks must not
occur simultaneously. Moreover, irrigation should not be active
in more than one park at a time, to conserve water.

Notice that the smart city presented is an instance of the
IoT; several sensing or actuating devices are needed to realize
it. Devices or certain scopes in the city (e.g., neighborhoods
or parks) have various goals, which, when the system is
in operation, may conflict (e.g., moisture may drop while a
recycling truck arrives in a park). Moreover, the particular
conditions and configurations of IoT devices are unknown at
design time; we require no knowledge of recycling trucks,
presence or not of irrigation in parks, for example. It is then
evident that coordination among IoT devices is required to
fulfill their various goals. Note how city goals consist system-
wide goals that may be affected by the IoT devices and edge
nodes within it.

District

9 Clean Neighborhoods
Parks Water Management

Irrigation
Waste Collection

Park :’J

Park Context

Transportation
Waste Collection

t—‘ Neighborhood

Neighbourhood
Context

E1B

Edge Scope

> Edge Scope

Fig. 1: 1oT resources within a smart city.

III. COORDINATION AT RUNTIME ON THE EDGE

IoT applications can be of various types, software stacks,
and complexities, with multiple system components deployed
in diverse domains and contexts. Those, however, do not live in
isolation and must be able to coordinate to fulfill application
or end-user requirements [4]. A software component hosted
on some device for instance, may require a reading from
a sensing endpoint in order to perform some computation
and fulfill its objective. This problem is exacerbated within
IoT deployments, as applications need to operate on diverse
infrastructures and integrate heterogeneous components from
various providers in a long-running system, with possibly
conflicting goals between components.

A. 10T Resources, Services and Goals

IoT software components provide data, sensing and actu-
ation, as well as computational resources to other software
components, which can be abstractly represented with the
concept of an IoT resource [10]. Within an IoT system,
components can have different software stacks but still interact
— this is widely achieved by software services, the architectural
abstraction permeating many systems today [23]. A system’s
development is then based on writing custom business logic
which utilizes services. As IoT components are resource-
constrained, services often take the form of loosely coupled
microservices, communicating with lightweight methods. Ex-
amples of this are typically found as sensing or actuation
endpoints — a temperature sensor responds with a temperature
value when invoked for instance, or a smart door unlocks a
door when the security system requires it to. Such function-
alities may be abstracted as resource microservices, that the
software-enabled devices make available over their local scope
such as a wireless network.

Resources that an IoT device may need from others need to
be appropriately composed and communicated to the device
in order for it to fulfill its objective. For example, computing

a local weather forecast (i.e., an objective) in a smart agricul-
ture setting may require temperature readings (i.e., resources)
from available devices across a crop field. In the general
sense, resources available within an IoT scope —some local
context— need to be coordinated, with the IoT device’s goal
in mind. This coordination essentially amounts to planning
as understood within self-adaptive systems: actively setting
in motion configuration changes to satisfy certain objectives,
in this case the goal of an IoT device which depends on
other IoT devices’ resources in its local scope. Satisfying
an IoT component’s goal however is challenging, as devices
are deployed in changing and unpredictable (i.e., at design
time) environments. Assumptions made at system design time
about the availability or location of resources that a device
needs may be violated. Thus, facilities providing control and
coordination must be performed at runtime and based on the
current environmental configuration, by ensuring that the IoT
system can autonomously react to changes in different contexts
in a dependable manner.

B. Coordinating Resources on the Edge

Centralizing computation of coordination — typically in the
cloud and evident in today’s IoT-cloud architectures is one
solution but requires cloud control structures to be always
available and within low latency. However, novel functional
and non-functional requirements that have arisen in IoT sys-
tems dictate computation and control to be situated locally near
devices [2]. Centralized coordination on the cloud is naturally
possible. However, the cloud (as a central point of failure)
may not be available, it is found within high latency from
local devices, and would generate impractical, unnecessary
network overhead, as every device would require coordination
functionality to be communicated to the cloud and back
for every resource request. We advocate that since the edge
computing entity is closer to end devices (and IoT application
users), there is an opportunity for situating coordination there
— something realized by empowering an edge computer to
actively coordinate resources of IoT devices within its scope.
We note that this fits the domain particularly well; IoT devices
are found within a local scope such as a local wireless network
or a deployment within a limited geographical region (e.g., a
city neighborhood). As such, placing an edge computing entity
close to a set of locally-scoped devices providing coordination
facilities is highly feasible.

Distributed systems mechanisms relevant to process co-
ordination and control such as service engineering and re-
source management can be adopted to identify and discover
IoT resources. Methods developed within formal aspects of
software engineering, such as requirements reasoning, model-
driven planning and self-adaptive systems are then adopted
in our approach to enable coordination of available resources
at runtime. Models kept at runtime, facilitate coordination
and the determination of how control actions can satisfy
goals within the system. Regarding architectural deployment,
the edge is a first-class entity in our approach, acting as a
manifestation of a control agent responsible for receiving IoT
device resource requests, observing contextual information and
inducing appropriate actions to satisfy them.

C. Instrumenting Coordination

Figure 2 provides a birds-eye view of our approach to
coordination at runtime on the edge. The capabilities offered
by IoT devices’ are abstracted as resources (i.e., microservices)
and made available through the network. In our approach,
those are specified at design time for each participating
software-enabled device, together with possible goals that the
device may seek to achieve (1). The resource configuration
of the system, as well as the environment that the system
may be found when operational is unknown at design time. At
runtime, IoT devices are found within some local scope, and
may interact with others to utilize their resources. However,
device goals may have interdependent requirements on other
resources, so coordination is required. An edge node situated
close to the IoT end-devices and managing the local IoT scope
is responsible for coordinating available resources at runtime
(2). Participating devices then interact according to generated
coordination plans to fulfill their goals (3).

Resource coordination occurs opportunistically at runtime,
for which we propose a technique based on bounded model
checking. This offers guarantees of correctness and optimality
of the generated plan which satisfies a requesting IoT device’s
goal. The resource coordination we propose extends traditional
service composition [24] and brings it into the IoT context;
(1) we adopt a lightweight approach suitable for resource-
constrained IoT microservices, (i) we allow quantifiers and
integer linear arithmetic for specification, and (iii) we target
low-powered ARM-based edge computers for deployment.
To completely realize the edge-based coordination facilities
advocated from a systems perspective, communication and
operational aspects must be treated. This includes (i) abstrac-
tion of resources from a programmatic perspective (e.g., how
resources are annotated at development time), (ii) how devices
and edge nodes communicate, and (iii) how the system copes
with operational real-time constraints, since those can vary per
deployment. For the latter, responses to resource requests from
IoT devices must occur in a timely manner, as the environment
changes rapidly (e.g., the recycling truck arrives at the traffic
light, Figure 1).

IV. DOMAIN MODELING AND METHODOLOGY

In this section, we provide basic abstractions and method-
ological principles necessary to instrument coordination within
an IoT domain we are situated in. For formalization purposes,
we assume a global set of names or key-value pairs II that
appear throughout the system'. We begin by outlining key
elements and assumptions of our approach, upon which we
define a methodology that the system designer follows to
instrument resource coordination at the edge.

IoT Resource. Architecturally, IoT devices are software
components deployed in different environments, each con-
taining resources. Generally, we assume that an IoT system
is architecturally composed of processes which are microser-
vices [8]-[10]. Such IoT microservices, when invoked yield
resources; however, successful invocation entails meeting the

'Without loss of generality, we take TT to be comprised of atomic proposi-
tions, essentially mapping identifiers and their values to true statements.

Edge Node
©: 3 Edge
O/VOB G/D< Goals
Coordination loT Context
V4
(2) Coordination)
o — T
1)
I~
3| Sensi Actuati
) N § ensing | Actuation
r\? EI Microservices
(3) Interaction R —
N 4_/"
- @
S

loT Devices
Runtime Edge Scope

Fig. 2: Runtime Resource Coordination on the Edge.

requirements of a microservice, which may depend on others.
We will refer to microservices and the resources that they yield
interchangeably. This may occur for several sequences of re-
source invocations, thus motivating the need for coordination;
knowledge of which resources are needed to operationalize
a resource that an IoT device requires entails coordination.
IoT resources within our approach are implementation- and
language- agnostic; what we require is modeling of their pre-
conditions (i.e., what they require to be activated), and their
post-conditions (i.e., how their successful activation changes
some context).

For our example, we assume that three exemplar resources
are present in the IoT system of the city, highlighting different
modeling aspects. A recycling truck has a recycling_truck
resource, which empties waste cans in a neighborhood where
the recycling truck is present. A smart traffic_light ensures that
municipal vehicles —such as the recycling truck— are met with
green lights, and an irrigation actuator in a park is responsible
for watering it when required. In depth treatment of resources
will be described in Section V.

Runtime Edge Context. In edge computing architectures,
IoT end-devices interact with their environment, where the
edge device is by definition located within the local domain
of certain IoT devices — one can take that as the devices being
in the logical scope of the local edge node. The status of
various devices, resources as well as environmental informa-
tion observed during system operation and that the edge node
is aware of is referred to as the runtime edge context. Edge
context is assumed to be local to some edge node (Figure 2).
We identify as C C II the runtime edge context, comprising
of a set of key-value pairs within an edge scope. A valuation
of C refers to a specific moment in time — key-value pairs
reflect the runtime physical or logical environment. While keys

are unique identifiers, the domain of their values can range.
Specifically, we allow booleans, a domain of a finite set, or
arbitrary integers. Valuation may change because of monitored
information (i.e., resulting in a change to a sensor value) or
due to exogenous to the system stimuli. However, it may also
change due to resources of IoT devices; (i) if a resource is
made available to others, this is reflected in C, and (ii) if it
is operationalized, it may change values it its context. We
assume appropriate instrumentation for correct accounting of
the various values within the edge context.

For our example, neighborhoods and parks are edge scopes,
in each of which an edge node is placed, accounting for the
current context and IoT devices that may be nearby, and as
we will observe later, coordinate their resources. We assume
that waste_cans and traffic_light are two identifiers within
the edge context of a neighborhood, values of which are
populated by sensors in the waste cans and a traffic light IoT
device, respectively (Formula 1). In the park, we assume that a
sensor detects soil_moisture and an other senses if the park is
crowded. (Formula 2). Within a neighborhood context, we can
observe different domains for values of its identifiers: while
waste_cans can be true or false, a traffic_light can be either
green or red. Differently, soil moisture in a park can be some
integer value:

Cheighd = {Waste_cans : bool, traffic_light : {green\red}};))

Cpark = {crowded : bool, soil_moisture : int}.)

IoT/Edge Goal: An objective which an IoT device or edge
node seeks to achieve is referred to as a goal — satisfaction of a
goal depends on available resources at its local environment.
Goals capture at different levels of abstraction, the various
objectives entities within the IoT system under consideration
should achieve, or constraints of various context values within
their control. A goal for an IoT or edge device is a logical
formula over the set II.

Back to our running example (shaded boxes within Fig-
ure 1), parks should be watered but this should not occur
simultaneously with waste collection — this entails an objective
of the edge node placed in the park. Similarly, a neighbor-
hood edge node should ensure that if municipal vehicles are
present, green traffic lights allow them to pass. The overall
city or district containing parks and neighborhoods, imposes
constraints, such as water management. Such goals will be
modeled precisely in Section V.

Design Time Methodology. Our approach entails engi-
neering resource coordination tailored to IoT systems, and
it methodologically spans both design-time and runtime. II-
lustrated in Figure 3 by leveraging design time specifications,
coordination is enabled at runtime through the following steps:

1) Modeling IoT resources. Language-agnostic, semantic
annotations to arbitrary IoT resources of participating
devices are specified. Such annotations record what a
resource requires to be operational, and what effects its
invocation has on other resources or context variables.
This step will be described in Section V-A.

System, Edge
and Device Goals

loT Resources = ---------- :
—>‘ Requires] Provides ‘3

. Microservice .

Resource
Coordination

. I """""""""""""""" Runtime
I o _
] —
Coordination O
Roemeters Coordination
W Configuration

Fig. 3: Engineering Coordination: Design time Methodology.

2) Modeling Device and Edge Goals. Objectives of the
various entities active within the system are captured in a
goal model, which facilitates goal refinement, resolution
of conflicts and goal interdependencies. This step will
be described in Section V-B.

3) Specification of runtime coordination parameters. The
technique employed at runtime to satisfy resource re-
quests from IoT devices is deployed on a resource-
constrained edge device. As such, coordination param-
eters regarding performance aspects are specified de-
pending on some particular deployment setting. The
coordination technique is described in Section VI, while
useful insights about parameterization will be illustrated
in Section VIIL.

A further necessary step — out of scope of the present paper

— are application-specific as well as architectural deployment
aspects. For a complete instrumentation of coordination, edge
nodes must be deployed and be responsible for certain scopes;
communication and network management must be handled as
well. We consider such aspects as orthogonal to our approach,
and we assume they are in place.

V. RESOURCES AND GOALS WITHIN IOT

Resources in an IoT context may be arbitrary, provided
by heterogeneous software components deployed on devices
from various vendors and architectural stacks. Within the
overall IoT collective, devices and edge nodes alike may have
objectives that they seek to achieve. In this section, we firstly
describe how IoT resources can be generally represented. This
includes particularly what they require to be operationalized,
and what their invocation entails for others. Secondly, we
adopt requirements engineering methods to capture objectives
throughout the system by goal modeling.

A. Modeling Resources within loT

To model resources within an IoT system, we advocate
the principle of procedural abstraction: capturing knowledge
of IoT process internals may be impractical, but considering
the requirements and effects of IoT processes is feasible. For
example, one does not need to know how a sensor array
calculates mean temperature based on a spatial dispersion of

IoT sensors, but only that by invoking some software service,
the current average temperature is obtained. To this end, as
noted in Section IV, we assume that a software-intensive IoT
system is architecturally composed of processes which are
microservices. Such IoT microservices, once invoked, yield
resources; however, successful invocation entails meeting the
requirements of a microservice, which in turn may depend
on others. This is where the use of pre-conditions and post-
conditions is beneficial, which we informally refer to as what
an IoT microservice requires, and what it provides. Pre- and
post-conditions are first-order logical formulae as parameters,
with propositions in set II. Quantifiers (over finite sets) and
integer linear arithmetic may be used for specification:

e Requires is a pre-condition directive that outlines what
conditions should be true in a given context for a resource
to become operational, essentially its requirements.

e Provides refers to a post-condition directive that outlines
what conditions are true as a result of an operationaliza-
tion of a resource.

More formally, a resource is a tuple A =< Ry, P, > where
Ry and P are first-order formulae of input and output param-
eters, respectively. Parameters themselves are sourced from
the global set of propositions II. Without loss of generality,
those are assumed to be key-value pairs. We slightly abuse
notation and refer to parameter if parameter = T. Given
the above, when a resource A\ is invoked with input Ry, A
returns output p € Py. Requires and provides directives are
specified at the system’s design time, for every resource.
For presentation purposes, we will write [Ry] A [P,] and
A =< Ry, P, > interchangeably.

[municipal_vehicle} allow_vehicle [traffic_light :green]. 3)

Given the above, we can model the resources of our smart
city example. Recall that traffic lights deployed facilitate
municipal vehicles such as ambulances or recycling trucks,
so that they are presented with green traffic lights. This traffic
light functionality can be represented as a resource (i.e., that
a traffic light IoT device offers), setting the traffic light to
green when applicable. Formula 3 intuitively states that when
a municipal_vehicle context value is true, the light turns green.
The context value within a neighborhood (Cpeighd) is assumed
to be set by e.g. a truck when it is within the local scope of
the traffic light. The functionality of a recycling truck (i.e., as
an IoT device) can be similarly represented in Formula 4.

[trafﬂc_llght = green recycling_truck[waste_cans = empty]. (4)

A waste_cans = full

Quantitative values can also be captured in resource parame-
ters — for this purpose, we support integer linear arithmetic. For
example, the irrigation resource present in the park (i.e., due to
an IoT device responsible for irrigation), should be activated
when detected soil moisture is below a certain threshold and
when the park is not crowded. The irrigation resource can
then be modeled as in Formula 5. When some context value
crowded is false and some other soil_moisture is less than 20,

irrigation — if activated — will result in setting the latter to 20;
those refer to Cpark.

— crowded A
soil_moisture < 20

} irrigation[soil_moisture =20 |. (5)
In general, resource models in IoT [25] are widely established
in literature and can be utilized to model resources as the
formulae tuples < Ry, P, > we advocate, since the model is
quite generic. Within parameters, propositions of < Ry, P\ >
formulae can include (i) location, describing the logical
physical domain where a resource resides, (ii) administrative
domain, describing a repository permitting authentication or
authorization, (iii) type, characterizing a resource instance as a
sensor, actuator or a logical entity, or (iv) capability, providing
special abilities that a resource enjoys, based on some domain
ontology. All of those, including quantitative cases, can be
encoded as < Ry, P, > parameters and exposed in the
namespace of an edge context using the method previously
described.

B. Modeling Goals within loT

Recall that both IoT devices as well as edge nodes may
have goals; in our context, goals are objectives within the
system that various entities seek to achieve. The role of the
edge is to facilitate goal achievement for devices within its
scope. Depending on the general state of the system, overall
system-wide goals may be affected in turn.

Goal-oriented modeling, widely used in requirements en-
gineering [26]-[29], is a technique that can capture, clarify,
and enable analysis of system requirements. The structured
form of a goal model allows refinement of system goals to
subgoals, prioritization of requirements, as well as resolution
of inconsistencies that may be due to conflicting stakeholder
viewpoints. Our intuition to model goals in the IoT-edge
context is that edge nodes in IoT systems are often arranged
in a hierarchy, where the cloud is the global or root entity
representing the whole system, and edge computers are found
within that hierarchy with IoT devices as end nodes. Notice
that this structure is reflected in our running example, where
a district may contain multiple neighborhoods and parks each
having a logical edge node. IoT devices are within the scope
of an edge entity leading to a tree arrangement where IoT
devices are leaves.

In our approach, we adopt a form of discrete goal modeling
to capture objectives of devices, edge nodes as well as their
relationships”. As shown in the goal model of Figure 4 which
encodes system concerns of the running example, each goal
can be refined into subgoals through an and-or decomposition.
At the leaf-level of the goal model reside IoT device goals —
each leaf describes an objective of an IoT device. As with
specification of pre- and post-conditions, a goal for an edge
device is an arbitrary first-order logical formula E over the
set of global set of names II; for an IoT device, we denote

2Note that weights can be assigned if quantitative aspects are desired,
leading to a weighted goal model [30] and further constraints.

District (System) G
vneighbourhood: waste_cans==empty
A 3! park: park.irrigation

Neighborhood £—¢q

allow_vehicle

Park (Edge) G‘

Constraint irrigation @ recycling_truck

\4
Recycling Truck (Device) _j

waste_cans==empty

Fig. 4: Goal model capturing objectives throughout the system.

its goal as G. Quantifiers (over finite sets) and integer linear
arithmetic may be used for specification.

Goal modeling is used to (i) provide an indication of
satisfaction of the various system objectives, (ii) provide a
structured way of managing relationships within the edge-
intensive system and to (iii) coordinate appropriately devices
within edge scopes. The satisfaction status of each (sub-)goal
in the goal model (e.g., in Figure 4) can be determined by
observable run time information or by active operations of
IoT devices. The current context status on every edge node
captures this. For example, the status of waste cans in a
neighborhood can either be monitored (e.g., by sensors in
the waste cans) or set to “empty” by a recycling truck. The
goal model structure intuitively shows how other sub-goals are
affected — observe that if a recycling truck empties the waste
cans in a neighborhood, its respective goal will be affected.
Values of subgoals are propagated upwards the goal model
(i.e., over a system goal structure), affecting satisfaction of
parent goals. Assuming a variable with values of a known
finite set of neighborhoods in a district, the system-wide goal
states that for every neighborhood, the waste cans should be
empty, and that there is exactly one park such that the irrigation
is true. Similarly, a park edge sub-goal captures the fact that
irrigation should not be true at the same time where a recycling
truck is present in its scope.

Edge goals govern how they coordinate resources for re-
questing 10T devices — they constrain how objectives of
IoT devices are achieved. Since the runtime edge context is
unknown and coordination occurs at runtime, goal satisfaction
happens opportunistically; edge nodes’ and devices’ goals
may be satisfied depending on presence of other devices and
runtime context values. This in turn, may affect other sub-goals
of the system — for example, if the waste cans are emptied
in a neighborhood and this happens for every neighborhood
in a city, the district’s, system-wide goal may be satisfied
(first clause in the conjunction in Figure 4). Goal relationships
between edge nodes are not accounted for coordination as this
would impair system performance and incur centralization —
each edge in a decentralized manner imposes its own goals

within its scope, but their resulting satisfaction is propagated to
parent system goals as sub-goals. Thus, monitoring of system-
wide goals is supported. Note that imposing system-wide goals
to edge nodes would imply that each edge is constrained by
what occurs within another edge’s scope, something that would
require a centralized (perhaps priority-based) strategy — we
identify this as a promising avenue of future work. Overall,
specification of a goal model is left to the system designer,
which may specify arbitrary goals for entities in the system.

VI. DEPENDABLE RESOURCE MATCHMAKING

As we observed, the edge as the coordinator within its active
runtime context, receives a request from a device seeking to
achieve some goal which depends on other IoT resources or
context values. Coordination then amounts to figuring out how
to combine available resources or context values to produce
a plan, which is then be returned to the device. We call this
process resource matchmaking, as it entails making a match
between the requesting device and other devices, such that
their resource combination can achieve a goal. Matchmaking
as described is a complex problem as it amounts to NP-
completeness; in this section we present the technique we
utilize, which results in dependability guarantees; solutions are
provided always correctly and optimally (if they exist).

To tackle resource matchmaking, after first formally defin-
ing the problem we demonstrate how it can be mapped to a
state-transition structure capturing evolution of resources in the
system. Subsequently, we reduce the matchmaking problem
to reachability within this state-transition structure. Finally,
we provide a Conjunctive Normal Form (CNF) encoding of
the problem that is suitable as input to a solver, upon which
bounded model checking [14], [19], [31] is used to solve it,
yielding a correct and optimal solution.

A. Resource Matchmaking Problem

Recall that a resource is a tuple A = < R,P > where R
and P are first-order formulae of input and output parameters,
respectively. We assume that when a resource A is invoked
with the input formula R, A\ returns output P (i.e., resource
microservices work correctly). To decide an invocation rela-
tionship from resource A\; = (Ry,P1) to Ay = (R, P»), it is
necessary to compare outputs P; of \; with inputs Ry of As.
To establish a relationship, the requirements Ry of Ao must
be met. Generally, given a set of available resources and a
request resource \,.q, we seek to find a resource A such that
R € Px. However, there might be the case that there is no
single resource satisfying the requirement of the requesting
resource. In that case, we seek to find a sequence A; --- A\, of
resources where in each step invocation of a resource \; occurs
and the desired objective is eventually achieved. As there can
be many such sequences, the optimal solution for the resource
matchmaking problem is to find one with the minimum value
for k.

B. Resource Evolution and Device Goal Reachability

To enable automated reasoning, we represent the evolution
of resources in a state-transition system generally known as

a (doubly) Labeled Transition System (dLTS [32]) which is a
tuple K = (S,IL A, £, A, Z,G) where:
o II is the global, finite set of atomic propositions,
e S is a set of states,
o L£:S — 2 is a function that labels each state with the
set of propositions II that are true in that state.
e A is a set of transition labels capturing resources,
e AC SxAXS isa 3-adic accessibility relation. If p, g €
S and o € A, then (p, a, q) € A is written as p > ¢,
e 7 € Sis an initial state and G € S is a device goal state.

States of K capture values (or parameter instantiations) while
transitions record how those can change by moving from one
state to its successors by operationalizing resources. Each
state declaratively represents an instantiation of resources and
context values (i.e., of II) at some moment of time. The
accessibility relation A between states shows how parameters
instantiations and context values change moving from a state s
to another s’; it corresponds to the transitions of K. Intuitively,
starting from an initial state of the system representing an
initial configuration, application of resources A\; generates
states according to their Ry, and P, and context values.
Given an incoming request for G from a device, the initial
state Z € S captures context values at the edge node at
the time of the resource request (i.e., at runtime). The goal
state G captures some configuration where G holds. Solving
the matchmaking problem as presented, amounts to reachabil-
ity [33] of G within dLTS K as illustrated in the following.

C. Resource Matchmaking with Bounded Model Checking

As we observed, given a request for a goal G from a device,
the desired outcome for the matchmaking problem is to find
a sequence of resource applications which starting from an
initial state, bring the system to a state where G is fulfilled. In
the following, we show how this reachability problem [33] can
be solved with bounded model checking [19], [31] through an
encoding to a CNF formula.

To formalize the reachability problem, it is first necessary
to introduce the following definitions. Given that s; € S,0 <
i <nand a; € A, a finite computation is defined as a finite
composition of transitions:

(e S RYe 2% [e] o Qg
80 — 7 Sn =def S0 ha § S1 =3 .. Spn—1 — Sn-
The concatenation oy - s - ... -« of labels (representing

resource invocations) is called a trace originating from sg.
The sequence of states si - ... - s,—1 is called the sequence
of traversed states. State sy is the originating state of the
sequence and state s, the end state. Reachability entails
the existence of a computation Z - sy - ... - s,—1 - G. Each
state s; along the computation captures available values (or
resource parameter instantiations) in time instant <. The desired
outcome is the respective trace; if the requesting IoT device
invokes the resources indicated by the trace in series, it can
reach G, where its goal G is fulfilled.

Recall that instantiated parameters and context values as
propositions that live on states S are drawn from set II, while
labels (corresponding to resources) from set A; a relation A

has the form § x A x S. The fundamental intuition to ob-
taining the trace, is establishing the relation A that represents
accessibility from a state s to its subsequent state — let s’ be
this subsequent state. To do this, we exploit the fact that a
resource application operates on Ry, in a way that yields Py
in the next state s’. Let T be a helper function yielding frue
if a label A € A and P, can be combined leading to R).
We represent as syj the propositions describing state s € S
as a conjunction. E is the formulation of the goal of the edge
node where coordination takes place. Establishing 4 starting
from the initial state Z, traversing states of the computation
and eventually reaching the device goal state G amounts to the
following formula encoding the computation:

(Zn AE) /\ T(smnes Aisissn,,ne) G AE. (6

0<i<k

Formula 6 starts with a conjunction of a set of propositions
describing the initial state conjuncted with the edge’s goals (re-
call that E itself is a first-order logical formula). Subsequently,
it encodes the existence of a computation whose transitions
are labeled according to resources A. Each state s € S of the
computation is a conjunction between the edge goal formula E
and propositions describing the state. Finally, a goal state (Gyy)
is reached while maintaining satisfaction of the edge goal E.
The edge goal acts as a further constraint on every computation
state — it must be always fulfilled as resources are invoked. The
device’s goal is the final state reached, while the edge’s goal
as well as the resource invocations govern how it is reached.

Note that the index k represents the length of the trace.
Formula 6 is true if and only if there exists a computation of
length & from state Z to goal state G of the dLTS K. Notice that
the formula is a conjunction of a finite collection of literals,
thus in CNF form. Following the definition of Formula 6, a
SAT/SMT solver can be used to check its satisfiability [31], for
incremental values of k. The smallest £ where the formula is
satisfied, represents the optimal solution. The respective trace
represents the solution sequence of resource invocations.

Device Goal

Current Edge Context

traffic_light=red
waste_cans=full

traffic_light=green
waste_cans=full

waste_cans=empty

allow_vehicle

allow_vehicle allow_vehicle

allow_vehicle recycling_truck

Fig. 5: ALTS fragment showing an evolution of resources to a
device goal. The edge goal is in bold, as a constraint through
the states of the computation.

For our resource coordination purposes, we essentially ask
for an assignment that satisfies the constraints of each re-
source, leading to the fulfillment of the device goal. The values
of the transitions make up the coordination plan, consisting
of the resource invocations that the requesting device must
perform to satisfy its goal. Formally, the plan returned is the

concatenation o - @ - . . . - oy, of labels (representing resource
invocations) amounting to the trace originating from Z and
leading to a goal state G where the device’s goal G is satisfied.
Certainly, if there exists no satisfiable solution, a plan cannot
be computed. If a plan exists however at a minimal length
k, there are guarantees about optimality — there is no plan at
length less than & that satisfies the goal. Given a coordination
problem, computation of a plan in practice can be achieved
by employing a SAT/SMT solver, from which a satisfiable
assignment of Formula 6 is requested.

Figure 5 shows the dLTS corresponding to our example;
state (a) captures the current edge context, where a recycling
truck arrives. Recall that the goal of the truck is to empty the
waste cans, which it communicates to the local neighborhood
edge node. The plan computed at the edge node, shows that
an invocation of allow_vehicle can enable recycling_truck,
which will lead to the satisfaction of the truck’s goal. Observe
how the presence of allow_vehicle on every computation
state acts as a constraint imposed by the edge node for the
generated plan. Finally, note that imposing system-wide goals
(as illustrated in Section V-B) to edge nodes would imply
that each edge is constrained by what occurs within another
edge’s scope, something that would require a centralized
(perhaps priority-based) strategy, which for the decentralized
coordination approach presented is not desired.

VII. EVALUATION

For evaluating the proposed approach, we developed tool
support and a proof-of-concept implementation based on the
CVC4 SMT solver [34]. Noting the absence of approaches
utilizing SMT solving on the edge, we deployed the prototype
on low-powered ARM-based devices representative of edge
nodes situated typically close to IoT devices in wide area
settings such as smart cities. The technique we advocate for
resource matchmaking is based on bounded model checking,
a highly computationally expensive operation which is usually
performed at design time. However, we bring it to the system
runtime. To this end, our evaluation goals target realization
and feasibility of our approach for coordinating resources at
runtime for the edge-enabled IoT. Concretely, we aim to:

« Investigate feasibility over concrete deployment on low-
powered, ARM-based edge devices;

o Assess performance of SMT-based resource matchmaking
over hard problem instances.

We present our evaluation setup on Section VII-A, and exper-
imental results obtained in Section VII-B. We conclude with
a discussion in Section VII-C.

A. Experiment Setup: Synthesized Resources

Our experiment setup entails (i) generating a suitable dataset
and (ii) deploying the prototypical framework on low-powered
devices which serve as edge nodes. To obtain a suitable
matchmaking dataset for our experiments, we automatically
generate problem instances, each containing (i) a set of IoT
resource specifications, (ii)) some IoT context assumed to
be active when the procedure is invoked, and (iii) some

resource goal that a device is assumed to have requested.
We synthesize matchmaking problem instances, varying the
number of resources available, resource pre-conditions, and
number of operators among them, given a global set of names
I1, where |II| = 100. Specifically, our experimental dataset
comprises of the specification of a set of 200 problem instances
in turn each comprising of:

o A set of resources X assumed to be available within
an edge scope. Each is modeled per Section V, as
< Ry, P\ >. The cardinality of X ranges from 10 to
50, yielding different problem instances.

o For each problem instance I, cardinality of R, sets for
every resource ¢ € I ranges from 5 to 15 of parameters,
which are randomly combined with a number of oper-
ators: 5 < |Ry| < 15. Operators are inserted randomly
within Ry,. Resource post-conditions are a conjunction
of five parameters: |P\| = 5. Ry, P\ CIL.

o A context description, referring to the set of context
values when the edge node initiates the coordination
process. We assume a conjunction of |C| = 20 such
context values, where C C II.

o A random device goal G, which is a conjunction of five
elements of II.

From the synthesized problem instances, we select ones that
are satisfiable, to ensure coverability of the whole process of
computing coordination plans presented in Section VI, and to
reduce noise in the results. Throughout the process, we use
boolean operators only, to simplify the automated resource
configuration generation, since finding satisfiable instances
on random SMT propositions amounts to a random search.
Moreover, to ensure uniformity we consider instances where
the optimal plan is found at a bound of 5 (i.e., kK = 5 ref.
Section VI). Subsequently, we deploy the reasoning machinery
on an edge device.

Our prototypical implementation employs the procedure
described in Section VI and is deployed on a low-powered
ARMvS R-Pi3 device featuring a 1.2GHz CPU and 1GB
RAM, serving as the edge node. Given a resource configu-
ration, the edge node’s functionality — implemented in Python
and C- consists essentially of the following steps: (i) the
appropriate bounded model checking formula representation
(Formula 6) is encoded depending on the problem instance,
(ii) the CVC4 solver is invoked upon it, and (iii) the plan is
computed from the satisfiability assignment of the solver. We
note that any SMT-LIB compliant SMT solver can be used; the
satisfiable assignment from the solver is then used to derive
the plan. Functionality is exposed through lightweight REST,
with which participating devices in the edge scope update
context values and request coordination plans. The procedure
described is invoked for every requesting device, resulting in
the computation of a coordination plan. As we observed in
Section VI-C, the coordination plan consists of the resource
invocations that the requesting device must perform within the
edge scope to satisfy its goal. Subsequently, we evaluate how
such instances perform in practice by simulating requests from
devices to the edge node. Device requests are drawn from the
problem instance dataset of the previous step.

- 15
|
14 | :
- {14
a
12 m :
- o
| {13 E
o
z o) = § |
o =]
b [| I g
< 12 =
g s “ 5 = -
g | I | g
— =}
=1
i 11 g
«
6 i :
X 10
4fl :
9
| | | |

10 20 30 40 50

IoT Resources per Matchmaking Problem Instance

- {14
14 =
12
12 =
%2
=
-
los}
2 10l B
2 3
S =
2 A
F E
£ 8 i B
X
=
<
6, .
6
® o
41 . o . |
. .'o' ..- ° o
) 4
| | | |
7 8 9 10

Mean | R} | in Matchmaking Problem Instance

(a) Resource set cardinality (|X|) of matchmaking problem instances over (b) Mean resource dependencies in matchmaking problem instances over
coordination time. Shading in points indicates the average number of opera- coordination time. Points size indicates the size of the SMT encoding of

tors used in each satisfiable problem instance.

the respective bounded model checking problem.

Fig. 6: Matchmaking problem instances; coordination time, | Ry |, operators and SMT symbols on an ARMv8 edge device.

B. Experiment Results: Resource Coordination

To obtain experiment results based on the synthesized
dataset, we simulate requests from devices, to investigate
performance of the various problem instances, and we account
for the time taken to coordinate the resources in every problem
instance. We ignore network overhead, and we report on the
total computation performance of the coordination plans, from
a request to the plan response by the coordinating edge node.

In Figure 6a, the number of IoT resources (X) over time
is illustrated — each data point is a single problem instance
(i.e. a resources-context-goal configuration). Additionally, one
can observe the number of operators used in the requires
dependencies of (every) resource in the configuration (shading
in data points). Evidently, the more IoT resources there are
in a problem instance the more time it takes to coordinate.
Due to the boolean satisfiability solving [35] that underlies
the matchmaking process, SAT/SMT problem instances with
different number of operators perform differently, although the
number of resources is kept constant (i.e., within a vertical
line in Figure 6a). For example, one can observe that in
the vertical line denoting 25 IoT resources, some problem
instance utilizing 14 operators per (every) resource performs
better than some particular problem instance with 10 operators.
Hardness of SAT/SMT satisfiability [36] is beyond the scope
of this paper. Due to the synthesized nature of our evaluation
dataset, we did not consider edge goals as those would be
defined per application. However, those would not affect
results significantly due to the small expected size that their
encoding would add as an overhead.

Figure 6b captures mean |R| size per matchmaking prob-
lem instance across time. Each data point is a single problem
instance — the same resources-context-goal configurations of
the previous Figure 6a. The size of the resulting SAT/SMT for-
mulae in symbols (as per Formula 6 of Sec. VI) corresponding
to the coordination problem encoding is represented by the
point size. Number of symbols within formulae range from
4k to 14k. Naturally, as formula size increases, so does the
coordination time. We can observe that again, certain problem
instances with small average cardinality |Ry| lead to hard
instances, and vice versa. However, the formula size is a strong
indicator of coordination time.

Based on the above results, a system designer can obtain
insights depending on her particular problem setting. Within
a typical design process, a designer requires knowledge of
the performance of the system, due to the definition of some
Service Level Agreement (SLA). Our evaluation results show,
that by selecting a number of IoT resources (e.g., 20 resources
on Figure 6a) and an average number of operators per resource
dependencies (e.g., 10), a matchmaking performance at least
5 seconds is to be expected. Then, formula size and average
|R»| can also give an indication of expected time.

C. Discussion

We have demonstrated that by using our coordination frame-
work, coordination of IoT resources in an edge setting in
a dependable manner can be performed. Furthermore, we
showed that our technique based on SMT-based bounded
model checking at the edge is performant and feasible for

realistic problem sizes, even on low-powered ARM-based
devices. We especially note that our resource coordination
technique guarantees correct and optimal results due to its
satisfiability foundations.

We showed performance based on synthesized IoT resource
problem instances. Our results are actionable since a system
designer can estimate performance of coordination based on
the problem space induced in her particular setting. This,
combined with testing resource configurations prior to deploy-
ment can drive design decisions during system development.
Essentially, given a number of 10T resources, propositions and
operators per resource (Figures 6a-6b), one can estimate a
time that coordination computation can be achieved. The type
of operators used within specification as well as the formula
structure obviously affects satisfiability. We plan to investigate
what type and mix of operators occurs in practice in IoT
resources specification, and construct guidelines and metrics
relevant to the resource encoding arising from our coordination
technique.

Several assumptions inherent in our approach must be
further investigated. For evaluation purposes, we considered a
coordination plan of length 5; however, there may exist settings
where a higher or lower plan length is desired. Moreover,
operationalization of our approach with optimality in mind,
entails finding plans first on plan length 1, then if none is
found on plan length 2, etc. To optimize this step-wise search,
the SMT problem encoded can be incrementally introduced to
a solver which makes use of past unfoldings to possibly find
satisfiable solutions faster. We identify this as future work.

Moreover, temporal aspects of both the specification as
well as the overall process must be investigated. Firstly. the
planning time plus its execution (i.e., the device invoking the
resources described in the plan) must be faster than the rate
of change of the environment — as such, longer plans may
not be advisable, and %k should be largely kept small [37].
Secondly, temporal aspects regarding resource invocations
are not captured in the model. Algebraic operations upon
countable parameters would also be useful, as invocation of
a resource microservice of a battery-powered actuator might
consume energy. In our example for instance, irrigation in the
park may take time. We identify integrating temporal aspects
both regarding the model as well as planning and execution
as a significant avenue of future work.

Operationalization of our framework could also benefit
from domain-specific adjustments and heuristics. For example,
previous plans may be stored (e.g., memoized) to avoid
computing them again. The depth of the solution search
may be adjusted depending on current edge computational
load or other factors. On the problem level, grouping IoT
resources in an ontology can allow the underlying solver
to disregard irrelevant or unsatisfiable solutions faster, thus
rendering our approach capable to consider a higher number
and more complex IoT resources. Finally, we note the absence
of approaches utilizing SAT/SMT solving at the edge, and
underline the opportunities that this brings for dependable
edge-enabled IoT settings.

VIII. RELATED WORK

We presented a methodology and technical framework to
engineering resource coordination for the edge-enabled IoT,
thus touching upon several research areas. Consequently, we
classify related work into three categories. First, we discuss
key approaches in the conception of resources as services
within IoT. Then, we review related techniques on service
composition, as they apply to IoT. Lastly, we discuss related
engineering approaches from the domain of self-adaptive
systems, framing our approach within the overall software
engineering domain.

A. Resources as Services within loT

The prevalence of internet-connected devices featuring var-
ious actuation and sensing capabilities provides new means
for development of composite software systems. So far, cloud
computing has been seen as a key component for the devel-
opment, deployment, and coordination of IoT collectives.

In recent years, the paradigm of Service-Oriented Archi-
tecture (SOA) [9], [38] has received considerable attention in
the field of IoT. Spiess et al. [39] proposed an architecture
for effective integration of IoT in enterprise services, where
they are used to implement business processes. Since the
services are offered in a device level with frequent changes, a
traditional business process language like BPEL is not built
to support such dynamics. As result, an extended version
of BPEL is provided to model business processes at design
time which supports dynamic changes of services during
process execution. Furthermore, to satisfy application needs
or in response to unforeseen context changes, it is possible
to remotely deploy new services during runtime. Meyer et
al. [40] investigate how an “loT device” component and its
native services can be expressed as a resource in an loT-aware
process model. Cheng et al. [41] propose a situation-aware
IoT coordination platform based on the event-driven service-
oriented architecture (SOA) paradigm. The proposed system
architecture effectively utilizes SOA and EDA paradigms —
SOA is used to resolve interoperability issues among heteroge-
neous services and physical entities while EDA is used to ad-
dress the problem of the cross-business-domain. Furthermore,
Zhang et al. [42] present an event-driven service-oriented
architecture for IoT services. Sarkar et al. [43] proposed a
layered and distributed architecture for IoT, which overcomes
most of the obstacles in the process of large-scale expansion
of IoT.

In pervasive environments, selecting appropriate resources
and services that satisfy user’s requirements is a challenge.
Due to their dynamic nature, efficient resource discovery
is essential in order to achieve wide user acceptance. A
significant number of works within service discovery has
been focused on context based approaches. Butt et al. [44]
provide a service selection technique to offer the appropriate
service to a user application depending on the available context
information. Rasch et al. [45] propose a proactive service
discovery approach for pervasive environments, described by a
formal context model which effectively captures the dynamics
of context and the relationship between services and context.

Wang et al. [46] propose an architecture for service discovery
in smart cities, focusing on taking a set of devices around
a citizen and proactively producing a list of services that
surround the user using his preferences. Jin et al. [10] describe
device, resource, and service as the three core concepts in a
model which specifies relationships among them. Moreover,
quality of service attributes are defined which reflect features
of physical services. Yang and Li [47] propose an efficient
strategy from the perspective of sensory and data selections
and aggregation, with genetic algorithms as the global opti-
mization method. Since we adopt the concept of everything-
as-a-service (XaaS) abstraction to uniformly represent physical
things, hardware and software resources as microservice such
discussed works are relevant to our proposed approach.

Well-known approaches adopt semantic web technologies
and matching techniques for effective service discovery. Yue-
an Zhu [48] design service discovery in pervasive computing
using the description language OWL-S, matching services
according to their category, Input/Output parameters, and QoS.
Mokhtar et al. [49] support efficient, semantic, context- and
QoS-aware service discovery [50] on top of existing service
discovery protocols (SDPs) [51] — this operates at a higher,
semantic abstraction level, and is thus independent of the
specific underlying SOA technology employed. In addition,
a language for semantic service description covers both func-
tional and non-functional service characteristics as well as a set
of conformance relations and prescribes the way for applying
them in order to perform service matching. Approaches related
to the semantic web technologies used for service discovery
are also relevant to our proposed approach. Since semantic
service description covers both functional and non-functional
they can be included also to the methodology that we propose
for specifying resources.

B. Service Composition and IoT

As service-oriented architecture (SOA) becomes widely
used, providing the right services that satisfy a user’s goal
is becoming a big challenge in IoT environments. Due to
dynamicity, heterogeneity and function constraints, IoT ser-
vices differ from traditional services. In addition, IoT services
are related more to the physical world by sensing state and
inducing operations that will cause a state change. A great
number of approaches have been proposed to deal with such
service composition; we employ a SAT-based technique simi-
lar to Kil et al. [52], where the semantic aspect is considered,
enabling the composition engine to identify correct, complete
and optimal candidates as a solution. However, we extend it to
SMT, we use linear integer arithmetic and first-order formulae,
and deploy on resource-constrained edge devices instrumented
at runtime. Mayer et al. [53] present a consistency-based
service composition approach that serves as a unified platform.
The proposed framework is based on a declarative constraint
language to express user requirements, process constraints, and
service profiles on a conceptual level and also on the instance
level. Pistore et al. [54] propose a solution for automated
composition at the process level using OWL-S. A composition
takes into account that executing a web service requires inter-
actions that may involve different sequential, conditional, and

iterative steps. A process level description of the composite
service is generated by using each individual description of
services. However, the proposed solution does not consider
selecting the services that take part in the composition.

An architectural approach to enable the automated for-
mation and adaptation of Emergent Configurations (ECs) in
the IoT have been proposed by [55]. An EC is formed
by a set of things, with their services, functionalities and
applications, to realize a user goal. ECs are adapted in response
to (un)foreseen context changes e.g., changes in available
things or due to changing or evolving user goals. Hussein
et al. [56] propose a model-driven approach to ease the
development of adaptive IoT systems. A design model is
specified based on the system requirements as well as the
system functionality and adaptations. Furthermore, it is used
to generate the system implementation, transformed to an IoT
platform-specific model. This model is used for generating
code and a deployment to a hardware platform. After adaption
is triggered, the system changes its state based on the designed
model. Urbieta et al. [57] propose an adaptive service com-
position framework. The framework is based on an abstract
service model representing services and user tasks in terms
of their signature, specification, and conversation. Xinming
and Yan [58] propose a service mining scheme based on
semantic for [oT to provide users with interesting composite
services. Service composition is achieved by combining and
recommending to users according to the calculation of service
similarity — however, not including service composition QoS.

Ciortea et al. [59] propose a decentralized approach to
IoT mashup composition that considers flexibility and re-
sponsiveness of resulting applications. Goal-Driven software
agents are equipped with precompiled plans which cooperate
with one another through socio-technical networks (STNs) to
compose IoT mashups at runtime in pursuit of their goals.
Various IoT devices are modeled as agents based on their
capabilities. Agents are goal-driven and rely on precompiled
plans that specify how to achieve their goals. Whenever the
goal cannot be fulfilled by a single agent, agents cooperate
with one another through STNs to compose mashups which
achieve the goals. In contrast, we synthesize plans at runtime,
and utilizing available resources opportunistically from the
runtime edge context. Mayer et al. [60] proposed service
composition system that enables the goal-driven configuration
of smart environments for end-users by combining semantic
metadata and reasoning with a visual modeling tool — instead
of using predefined service mashups, creation of them in a
dynamic manner fulfills the desired user goal. This dynamicity
is similar to our coordination approach. Such flexibility is
achieved through using embedded semantic API descriptions.
Hence, service mashups can adapt to dynamic environments
and are fault-tolerant.

C. Self-adaptive systems and loT

Self-adaptive software becomes an inseparable part of sys-
tems characterized by uncertain environments, evolving re-
quirements, and unexpected failures. In order to meet strict
functional and non-functional requirements in applications

within diverse areas, Calinescu et al [61] propose a methodol-
ogy and instantiation of dynamic safety cases which allows
adjusting the system during execution while providing the
intended functionality and its requirements. Marrella et al. [62]
propose a model and prototype process management system
featuring a set of techniques providing support for automated
adaptation of knowledge-intensive processes at runtime. Such
techniques are able to automatically adapt and recover pro-
cess instances when an exception occurs and without the
intervention of domain experts at runtime. Chen et al. [63]
propose a runtime model-based approach to IoT application
development. The initial step toward the proposed approach
is considering that sensor devices are abstracted as runtime
models that are automatically connected with the correspond-
ing systems. Based on the application scenario, a customized
model is constructed and the synchronization between the
model and sensor device is achieved through model transfor-
mation. As result, the application logic is mapped and executed
on the customized model after some definition are given such
as group of meta-models, mapping rules, and model-level
programs.

In the context of self-management architectures, a sig-
nificant number of generic approaches have been proposed.
Kramer et al. [64] proposed a three-layer reference model to
support automatic (re)configuration of self-managed systems,
consisting of a component control layer, a change management
layer and a goal management layer. The component layer is re-
sponsible to provide change management which re-configures
the software components while the change management gen-
erates plans to achieve system goals. An overall model relies
on a set of plans which aims to achieve the desired system
goals. Whenever new goals are introduced to the system, the
change management layer is responsible to generate new plans
for achieving desired goals. Thus, we follow this methodology
essentially targeting low-powered ARM-based edge computers
for deployment. In addition, the resource coordination facilities
we provide are dependable to each other. Weyns et al. [65]
propose architecture-based adaptation approach to solve the
concrete problem of automating the management of IoT.
The software system utilizes a feedback loop that employs
models @runtime and statistical techniques to reason about the
system and induce adaptation to ensure the required goals.

Software systems are deployed in dynamic environments
that change over time and often have to adapt to the chang-
ing conditions in order to meet system goals. Well-known
approaches have been developed for runtime monitoring for
different kinds of systems. Seiger et al. [66] present an
approach for enabling self-adaptive workflows based on the
MAPE-K (Monitor, Analyze, Plan and Execute on a Knowl-
edge Base) control loop for self-adaptive workflows in cyber-
physical systems. The proposed approach within MAPE-K
loop monitors and analyses the real-world effects through
sensor and context data which is used to check for faulty
errors in the physical world. If an inconsistency between the
sensed physical world and the assumed cyber world can be
detected, a compensation strategy is chosen and the adapted
process is executed. Cailliau et al. [67] proposes obstacle-
driven runtime adaptation techniques for increased satisfaction

of probabilistic system goals. The approach is based on the
MAPE cycle and relies on a model where goals and obstacles
are refined and specified in a probabilistic manner. However, in
contrast to the proposed approach we guarantee the optimality
and correctness of generated coordination plans — we identify
quantitative extensions to our goal modeling as future work.
The resource coordination facilities we provide are dependable
because if there is a solution to a resource coordination
problem for a device, the technique we utilize will provide a
plan for it, and the plan will be optimal. This is in contrast to
other approaches utilizing other coordination techniques such
as based on AI [20]-[22].

IX. CONCLUSIONS

Software components within pervasive IoT systems make
use of resources which can be various computational capa-
bilities, including sensing or actuation endpoints. Components
do not live in isolation and must be able to coordinate with
others to fulfill their goals. Edge computers placed near end-
devices can be leveraged for control — providing resource
management for devices within their active context. To this
end, we proposed a methodology and technical framework
for engineering resource coordination at runtime, tailored for
the decentralized, pervasive systems of today. We adopted
goal modeling to capture objectives within the IoT and used
bounded model checking as the foundational technique to
compute coordination plans which satisfy device goals. This
occurs opportunistically at runtime, without any knowledge
about the operational status or presence of resources in the
system at the system’s design time, but always in accordance
to the edge’s own goals. Our technical framework exhibits
dependability guarantees regarding optimality and correctness
of generated coordination plans, and is realizable on edge
nodes deployed on low-powered ARM-based edge devices.

We believe coordination at the edge as presented paves the
way for situating control logic close to end-devices, leading to
increased decentralization in edge-based systems. We plan to
investigate dealing with conflicting goals, where edge nodes or
devices have requirements that overlap but do not agree [68]
and which may require negotiation to resolve. Although goals
in our approach were assumed to be functional, if non-
functional requirements are considered tradeoffs may need to
be made with respect to e.g. cost, performance, energy, etc. We
identify integrating temporal aspects both regarding the model
as well as planning and execution performance as a significant
avenue of future work. Resources may be countable, reflecting
some limited availability such as a cost — this requires extend-
ing the encoding. Moreover, resource invocation timings can
be captured in the model, as countable parameters would be
useful for quantitative requirements specification, related to
e.g. device SLAs. Operational aspects that need to be investi-
gated regard that the coordination process must be faster than
the rate of change of the environment. Finally, communication
and operational aspects were not treated within the dependable
runtime coordination approach presented. Considering the
perspective of a complete realization, such distributed systems
aspects need to be treated.

ACKNOWLEDGMENT

Research partially supported by the TU Wien Research
Cluster SmartCT.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

Amir Vahid Dastjerdi, Harshit Gupta, Rodrigo N Calheiros, Soumya K
Ghosh, and Rajkumar Buyya. Fog computing: Principles, architectures,
and applications. In Internet of Things, pages 61-75. Elsevier, 2016.
Christos Tsigkanos, Stefan Nastic, and Schahram Dustdar. Towards
resilient internet of things: Vision, challenges, and research roadmap. In
39th IEEE International Conference on Distributed Computing Systems,
ICDCS 2019, Dallas, Texas, July 7-10, 2019, 2019.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements,
and future directions. Future generation computer systems, 29(7):1645—
1660, 2013.

Victor R Lesser and Daniel D Corkill. Functionally accurate, cooperative
distributed systems. In Readings in Distributed Artificial Intelligence,
pages 295-310. Elsevier, 1988.

Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. Modeling and
verification of evolving cyber-physical spaces. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, pages
38-48. ACM, 2017.

Christos Tsigkanos, Laura Nenzi, Michele Loreti, Martin Garriga,
Schahram Dustdar, and Carlo Ghezzi. Inferring analyzable models from
trajectories of spatially-distributed internet-of-things. In /th IEEE/ACM
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2019, Montreal, Canada, May 25-26,
2019. IEEE Computer Society, 2019.

C Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown,
Rebekah Metz, and Booz Allen Hamilton. Reference model for service
oriented architecture 1.0. OASIS standard, 12:18, 2006.

Athman Bouguettaya, Munindar Singh, Michael Huhns, Quan Z Sheng,
Hai Dong, Qi Yu, Azadeh Ghari Neiat, Sajib Mistry, Boualem Benatal-
lah, Brahim Medjahed, et al. A service computing manifesto: the next
10 years. Communications of the ACM, 60(4):64-72, 2017.
Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, and
Domnic Savio. Interacting with the soa-based internet of things: Dis-
covery, query, selection, and on-demand provisioning of web services.
IEEE transactions on Services Computing, (3):223-235, 2010.
Xiongnan Jin, Sejin Chun, Jooik Jung, and Kyong-Ho Lee. Iot service
selection based on physical service model and absolute dominance
relationship. In Service-Oriented Computing and Applications (SOCA),
2014 IEEE 7th International Conference on, pages 65-72. IEEE, 2014.
Nianyu Li, Christos Tsigkanos, Zhi Jin, Schahram Dustdar, Zhenjiang
Hu, and Carlo Ghezzi. Poet: Privacy on the edge with bidirectional data
transformations. In 2019 IEEE International Conference on Pervasive
Computing and Communications, PerCom 2019, Kyoto, Japan, March
11-15, 2019. IEEE, 2019.

Ju Ren, Hui Guo, Chugui Xu, and Yaoxue Zhang. Serving at the edge: A
scalable iot architecture based on transparent computing. /EEE Network,
31(5):96-105, 2017.

Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories.
Springer International Publishing, 2018.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman,
Yunshan Zhu, et al. Bounded model checking. Advances in computers,
58(11):117-148, 2003.

Jinghai Rao and Xiaomeng Su. A survey of automated web service
composition methods. In International Workshop on Semantic Web
Services and Web Process Composition, pages 43-54. Springer, 2004.
Anupriya Ankolekar, Mark Burstein, Jerry R Hobbs, Ora Lassila,
David Martin, Drew McDermott, Sheila A Mcllraith, Srini Narayanan,
Massimo Paolucci, Terry Payne, et al. Daml-s: Web service description
for the semantic web. In International Semantic Web Conference, pages
348-363. Springer, 2002.

Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy,
Nirmal Mukhi, and Sanjiva Weerawarana. Unraveling the web services
web: an introduction to soap, wsdl, and uddi. IEEE Internet computing,
6(2):86-93, 2002.

Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview. W3C recommendation, 10(10):2004, 2004.
Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal methods
in system design, 19(1):7-34, 2001.

[20]

[21]

[22]
[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. Eco-iot:
an architectural approach for realizing emergent configurations in the
internet of things. In European Conference on Software Architecture,
pages 86—102. Springer, 2018.

Jorg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence
Research, 14:253-302, 2001.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
theory and practice. Elsevier, 2004.

Thomas Erl. Service-oriented architecture (soa): concepts, technology,
and design, 2005.

Quan Z Sheng, Xiaogiang Qiao, Athanasios V Vasilakos, Claudia Szabo,
Scott Bourne, and Xiaofei Xu. Web services composition: A decade’s
overview. Information Sciences, 280:218-238, 2014.

Suparna De, Payam Barnaghi, Martin Bauer, and Stefan Meissner.
Service modelling for the internet of things. In Computer Science and
Information Systems (FedCSIS), 2011 Federated Conference on, pages
949-955. IEEE, 2011.

M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Rec-
onciling system requirements and runtime behavior. In Proceedings of
the 9th international workshop on Software specification and design,
page 50. IEEE Computer Society, 1998.

A. van Lamsweerde. Requirements engineering - from system goals to
UML models to software specification. Wiley, 2009.

B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A goal-based
modeling approach to develop requirements of an adaptive system with
environmental uncertainty. In Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS’09), pages 468-483, 2009.

S. Liaskos, S. Mcllraith, S. Sohrabi, and J. Mylopoulos. Integrating pref-
erences into goal models for requirements engineering. In Proceedings
of the 18th IEEE International Requirements Engineering Conference,
pages 135-144, 2010.

Axel Van Lamsweerde. Requirements engineering: From system goals
to UML models to software, volume 10. Chichester, UK: John Wiley &
Sons, 2009.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita,
and Yunshan Zhu. Symbolic model checking using sat procedures
instead of bdds. In Proceedings of the 36th annual ACM/IEEE Design
Automation Conference, pages 317-320. ACM, 1999.
Edmund M Clarke, Orna Grumberg, and Doron A Peled.
Checking. MIT press, 1999.

Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient im-
plementation of property directed reachability. In Proceedings of
the International Conference on Formal Methods in Computer-Aided
Design, pages 125-134. FMCAD Inc, 2011.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli.
CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Pro-
ceedings of the 23rd International Conference on Computer Aided
Verification (CAV ’11), volume 6806 of Lecture Notes in Computer
Science, pages 171-177. Springer, July 2011. Snowbird, Utah.

Eugene Nudelman, Kevin Leyton-Brown, Holger H Hoos, Alex Devkar,
and Yoav Shoham. Understanding random sat: Beyond the clauses-to-
variables ratio. In International Conference on Principles and Practice
of Constraint Programming, pages 438—452. Springer, 2004.

Carlos Ansétegui, Maria Luisa Bonet, Jordi Levy, and Felip Manya.
Measuring the hardness of sat instances. In AAAI volume 8, pages
222-228, 2008.

Christos Tsigkanos, Liliana Pasquale, Carlo Ghezzi, and Bashar Nu-
seibeh. On the interplay between cyber and physical spaces for adaptive
security. [EEE Trans. Dependable Sec. Comput., 15(3):466—480, 2018.
Jeng-Shiou Leu, Chi-Feng Chen, and Kun-Che Hsu. Improving het-
erogeneous soa-based iot message stability by shortest processing time
scheduling. IEEE Transactions on Services Computing, 7(4):575-585,
2014.

Patrik Spiess, Stamatis Karnouskos, Dominique Guinard, Domnic Savio,
Oliver Baecker, Luciana Moreira Sa De Souza, and Vlad Trifa. Soa-
based integration of the internet of things in enterprise services. In Web
Services, 2009. ICWS 2009. IEEE International Conference on, pages
968-975. IEEE, 2009.

Sonja Meyer, Andreas Ruppen, and Carsten Magerkurth. Internet
of things-aware process modeling: integrating iot devices as business
process resources. In International conference on advanced information
systems engineering, pages 84-98. Springer, 2013.

Model

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

Bo Cheng, Da Zhu, Shuai Zhao, and Junliang Chen. Situation-aware
iot service coordination using the event-driven soa paradigm. [EEE
Transactions on Network and Service Management, 13(2):349-361,
2016.

Yang Zhang, Li Duan, and Jun Liang Chen. Event-driven soa for
iot services. In Services Computing (SCC), 2014 IEEE International
Conference on, pages 629-636. IEEE, 2014.

Chayan Sarkar, Akshay Uttama Nambi SN, R Venkatesha Prasad, Abdur
Rahim, Ricardo Neisse, and Gianmarco Baldini. Diat: A scalable
distributed architecture for iot. IEEE Internet of Things journal,
2(3):230-239, 2015.

Talal Ashraf Butt, Iain Phillips, Lin Guan, and George Oikonomou.
Adaptive and context-aware service discovery for the internet of things.
In Internet of things, smart spaces, and next generation networking,
pages 36—47. Springer, 2013.

Katharina Rasch, Fei Li, Sanjin Sehic, Rassul Ayani, and Schahram
Dustdar. Context-driven personalized service discovery in pervasive
environments. World Wide Web, 14(4):295-319, 2011.

Edward Wang and Richard Chow. What can i do here? iot service
discovery in smart cities. In Pervasive Computing and Communication
Workshops (PerCom Workshops), 2016 IEEE International Conference
on, pages 1-6. IEEE, 2016.

Zhen Yang and Deshi Li. Iot information service composition driven
by user requirement. In Computational Science and Engineering (CSE),
2014 IEEE 17th International Conference on, pages 1509-1513. IEEE,
2014.

Yue-an Zhu and Xiao-hua Meng. A framework for service discovery
in pervasive computing. In Information Engineering and Computer
Science (ICIECS), 2010 2nd International Conference on, pages 1-4.
IEEE, 2010.

Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie
Issarny, and Yolande Berbers. Easy: Efficient semantic service discovery
in pervasive computing environments with qos and context support.
Journal of Systems and Software, 81(5):785-808, 2008.

Sonia Ben Mokhtar, Anupam Kaul, Nikolaos Georgantas, and Valérie
Issarny. Efficient semantic service discovery in pervasive computing
environments. In Proceedings of the ACM/IFIP/USENIX 2006 Interna-
tional Conference on Middleware, pages 240-259. Springer-Verlag New
York, Inc., 2006.

Fen Zhu, Matt W Mutka, and Lionel M Ni. Service discovery in
pervasive computing environments. IEEE Pervasive computing, (4):81—
90, 2005.

Hyunyoung Kil and Wonhong Nam. Semantic web service composition
via model checking techniques. International Journal of Web and Grid
Services, 9(4):339-350, 2013.

Wolfgang Mayer, Rajesh Thiagarajan, and Markus Stumptner. Service
composition as generative constraint satisfaction. In Web Services, 2009.
ICWS 2009. IEEE International Conference on, pages 888-895. IEEE,
2009.

Marco Pistore, Pierluigi Roberti, and Paolo Traverso. Process-level
composition of executable web services:” on-the-fly” versus” once-for-
all” composition. In European Semantic Web Conference, pages 62-77.
Springer, 2005.

Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. Eco-iot:
an architectural approach for realizing emergent configurations in the
internet of things. In European Conference on Software Architecture,
pages 86—102. Springer, 2018.

Mahmoud Hussein, Shuai Li, and Ansgar Radermacher. Model-driven
development of adaptive iot systems. In 4st International Workshop on
Interplay of Model-Driven and Component-Based Software Engineering
(ModComp) 2017 Workshop Pre-proceedings, page 20, 2017.

Aitor Urbieta, Alejandra Gonzdlez-Beltrdn, S Ben Mokhtar, M Anwar
Hossain, and Licia Capra. Adaptive and context-aware service compo-
sition for iot-based smart cities. Future Generation Computer Systems,
76:262-274, 2017.

Xinming Li and Yan Sun. A service mining scheme based on semantic
for internet of things. Chinese Journal of Electronics, 23(2):236-242,
2014.

Andrei Ciortea, Olivier Boissier, Antoine Zimmermann, and Ad-
ina Magda Florea. Responsive decentralized composition of service
mashups for the internet of things. In Proceedings of the 6th Interna-
tional Conference on the Internet of Things, pages 53-61. ACM, 2016.
Simon Mayer, Ruben Verborgh, Matthias Kovatsch, and Friedemann
Mattern. Smart configuration of smart environments. [EEE Trans.
Automation Science and Engineering, 13(3):1247-1255, 2016.

Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman
Iftikhar, Ibrahim Habli, and Tim Kelly. Engineering trustworthy self-

[62]

[63]

[64]

[65]

[66]

[67]

[68]

adaptive software with dynamic assurance cases. IEEE Transactions on
Software Engineering, 44(11):1039-1069, 2018.

Andrea Marrella, Massimo Mecella, and Sebastian Sardina. Intelligent
process adaptation in the smartpm system. ACM Transactions on
Intelligent Systems and Technology, 8(2):1-43, 2016.

Xing Chen, Aipeng Li, Xue’e Zeng, Wenzhong Guo, and Gang Huang.
Runtime model based approach to iot application development. Frontiers
of Computer Science, 9(4):540-553, 2015.

Jeff Kramer and Jeff Magee. Self-managed systems: an architectural
challenge. In 2007 Future of Software Engineering, pages 259-268.
IEEE Computer Society, 2007.

Danny Weyns, M Usman Iftikhar, Danny Hughes, and Nelson Matthys.
Applying architecture-based adaptation to automate the management of
internet-of-things. In European Conference on Software Architecture,
pages 49-67. Springer, 2018.

Ronny Seiger, Steffen Huber, Peter Heisig, and Uwe ABmann. Toward
a framework for self-adaptive workflows in cyber-physical systems.
Software & Systems Modeling, pages 1-18, 2017.

Antoine Cailliau and Axel van Lamsweerde. Runtime monitoring

and resolution of probabilistic obstacles to system goals. In Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017
IEEE/ACM 12th International Symposium on, pages 1-11. IEEE, 2017.
Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework
for expressing the relationships between multiple views in requirements
specification. IEEE Transactions on software engineering, 20(10):760—
773, 1994.

Christos Tsigkanos is researcher at the Distibuted
Systems Group at TU Vienna. Previously, he was
post-doctoral researcher at Politecnico di Milano,
Italy where he received (2017) his PhD defend-
ing a thesis entitled "Modelling and Verification
of Evolving Cyber-Physical Spaces”. His advisor
was prof. Carlo Ghezzi. He holds a BSc degree in
computer science from University of Athens, Greece
and a MSc degree in software engineering from
University of Amsterdam, the Netherlands. His re-
search interests lie in the intersection of dependable

systems and formal aspects of software engineering, and include security and
privacy in distributed, self-adaptive and cyber-physical systems, requirements
engineering and formal verification.

Ilir Murturi is university assistant at the Distibuted
Systems Group at TU Vienna. He is working towards
his PhD in edge computing under prof. Schahram
Dustdar. His research interests include the Internet
of Things, edge computing, crowdsourcing, privacy,
and smart cities. He has an MSc in computer engi-
neering from the Faculty of Electrical and Computer
Engineering at University of Prishtina, Kosovo.

Schahram Dustdar is Professor of Computer Sci-
ence with the Distributed Systems Group, TU Vi-
enna, Austria and an IEEE Fellow. He was Honorary
Professor of Information Systems at University of
Groningen, The Netherlands (2004-2010), Visiting
Professor at the University of Sevilla, Spain (2016-
2017) and Visiting Professor at the University of
California at Berkeley, USA (2017). Dustdar is an
elected member of the Academia Europaea, where
he is Chairman of the Informatics Section. He was
recipient of the ACM Distinguished Scientist Award

(2009), the IBM Faculty Award (2012), and the IEEE TCSVC Outstanding
Leadership Award for outstanding leadership in services computing (2018). He
is the Co-Editor-in-Chief of the ACM Transactions on Internet of Things and
the Editor-in-Chief of Computing (Springer). He is also Associate Editor of
the IEEE Tranactions on Services Computing, the IEEE Transactions on Cloud
Computing, the ACM Transactions on the Web, and the ACM Transactions
on Internet Technology. He serves on the Editorial Board of IEEE Internet
Computing and the IEEE Computer Magazine.

