CUBEX: A CubeSat Exemplar for Teaching
Software Architecture Principles

Angelos Motsios', Timo Kehrer? and Christos Tsigkanos'?

!Space Software Group, University of Athens, Greece
2Software Engineering Group, University of Bern, Switzerland

Abstract. Teaching software architecture effectively requires bridging
the gap between theoretical concepts and practical application, particu-
larly in complex domains like software for aerospace systems. This pa-
per presents CUBEX, an exemplar developed for teaching software ar-
chitecture to master’s level university students. The project utilizes the
JPL’s F’ flight software framework within the context of a simulated
CubeSat mission focused on orientation monitoring. Students are tasked
with developing key flight software components, specifically an Inertial
Measurement Unit driver and a Payload processing component, adhering
to specified mission requirements. Through this process, students gain
practical experience with core software architecture principles, including
component-based design, interface definition, telemetry and event han-
dling, and system integration. We detail the project’s technical founda-
tions, pedagogical structure, and its value as a readily available, reusable
educational artifact designed to facilitate teaching of contemporary soft-
ware architecture principles.

Artifact: software.aerospace.uoa.gr/cubex

Video: software.aerospace.uoa.gr/cubex/overview.mp4

Keywords: Flight Software Architectures - Architecture Education

1 Introduction

Software architecture stands as a critical discipline within software engineer-
ing, dictating the fundamental structure, interactions, and properties of complex
systems. Educating future software architects [10] —particularly at the master’s
level — necessitates pedagogical approaches that move beyond abstract lectures
towards tangible, hands-on experiences [1]. Project-based learning, especially
when grounded in realistic domains like aerospace flight software (FSW), of-
fers a powerful mechanism for students to grapple with architectural trade-offs,
design patterns, and implementation challenges. However, educators often face a
scarcity of well-structured and accessible exemplars that utilize modern frame-
works representative of industry practice; the significant effort required to create
comprehensive teaching material, including setup guides, tutorials, and realistic
requirements, often presents a barrier. Architecture education [7] often struggles
to bridge the gap between theoretical concepts and practical application.

A real-world domain highlighting that a practical skillset is instead required
is the engineering of flight software for on-board space systems, which involves


https://software.aerospace.uoa.gr/cubex
https://software.aerospace.uoa.gr/cubex/overview.mp4

2 A. Motsios, T. Kehrer and C. Tsigkanos

a constellation of complex architectural challenges [6]. Those include constraints
imposed by limited computational resources, the imperative for high reliability
as well as intricate operational demands of particular missions; sophisticated and
well thought-out architectural designs are desired [5]. Our overall objective being
teaching advanced software engineering concepts, in line with notable efforts in
the field [9]. To this end, this paper introduces the CUBEX exemplar, designed to
address this need from the perspective of architecture education. It serves as a
laboratory exercise project for master’s students, focusing on teaching architec-
ture fundamentals within a simulated context. The core task involves building
FSW for a simulated CubeSat mission, monitoring the satellite’s orientation us-
ing real-time accelerometer data.

CUBEX leverages F’ (F Prime [2]), a component-based software framework
developed at the Jet Propulsion Laboratory (JPL) and increasingly adopted for
small satellite missions and robotics — and famously on the Mars Helicopter. F*
provides a structured environment that inherently promotes key architectural
principles like modularity, well-defined interfaces, and separation of concerns,
making it an excellent vehicle for teaching software architecture concepts. The
exercise context in a space mission adds a layer of realism and relevance for
students. The contribution of this paper is the presentation of CUBEX as an ed-
ucational tool for the software architecture community. It details the project’s
technical architecture, the specific software architecture concepts inehrent in it,
the pedagogical approach embodied in its structured tutorials and requirements,
and its availability as an open resource. The subsequent sections cover back-
ground on FSW development and the context of the exemplar (Sec. 2), a detailed
description of the architecture, requirements (Sec. 3), and how it teaches specific
concepts with an overview of the pedagogical structure and learning experience
(Sec. 4), and concluding remarks (Sec. 5).

2 Background: FSW Development and Exemplar Context

Understanding the context of CUBEX requires familiarity with both the F* frame-
work and the specific CubeSat mission scenario employed.

2.1 The JPL F’ Flight Software Framework

F’ is an open-source framework designed for the rapid development and de-
ployment of flight software systems. Originating from NASA /JPL, it rigorously
follows a component-based architecture. Its key tenets, in brief, entail:

— Components: The fundamental units of design and modularity in F’, com-
ponents are analogous to C++ classes — they encapsulate specific function-
alities and interact with each other through well-defined interfaces.

— Ports: Typed interfaces used by components for communication, defining
the data types and directionality of interactions.

— Topology: A model representing the overall system architecture, specifying
component instances and the connections between their ports.



CubeSat Software Architecture Exemplar for Teaching 3

— Commands, Telemetry, Events : Built-in mechanisms for space-ground
interaction, data reporting, significant event logging, and configuration man-
agement, respectively are key elements foundational in the space context.

— Modeling and Autocoding: F’ utilizes a domain-specific modeling lan-
guage (FPP — F Prime Prime [3]|) to define components, ports, types, and
topology. This model is then used by autocoding tools to generate significant
portions of target C++ code, including serialization, connection logic, etc.

The suitability of F* for teaching software architecture stems directly from
these features. F” enforces modular design through components, requires ex-
plicit interface definition via ports and the FPP topology, promotes separation
of concerns (e.g., application logic versus communication), and provides concrete
mechanisms for common FSW patterns like telecommand handling and teleme-
try. The C++ implementation base provides exposure to a language widely used
in embedded systems, while the autocoding aspect introduces students to model-
driven development practices. Furthermore, its provenance and use in real mis-
sions enhances student engagement.

2.2 CubeSat Simulated Mission Scenario

The project is situated within a specific — albeit simplified — CubeSat mission
scenario. This context provides a narrative and concrete goals.

Mission Objective: The primary goal entails monitoring a CubeSat’s ori-
entation and movement in space using data from an on-board accelerometer.
Software must acquire acceleration sensor data along three axes in real-time
and transmit it to the ground station. The FSW is required to continuously
acquire accelerometer data, compute average acceleration over the last second
for each axis, determine the dominant axis of acceleration and provide real-time
feedback to ground facilities on the CubeSat’s operational state and orientation.

The target CubeSat scenario serves a crucial pedagogical purpose — it trans-
forms abstract architectural concepts into tangible requirements (outlined later
in Sec. 4). For instance, “telemetry” becomes specifically accelerometer data,
“events” become dominant axis change notifications, and component interactions
are driven by the need to process sensor data and control physical actuators. For
the latter, LEDs are used in place of more advanced alternatives used in actual
missions — a decision also to enable breadboarding as an initial electronics boot-
strapping exercise. The grounding in a relatable mission makes the architectural
constructs easier for students to understand and motivates the design choices
needed to fulfill the mission objectives, as explicitly captured in requirements.

3 CubeSat Examplar for Teaching Architectural Concepts

CUBEX intends to provide a structured environment and materials for students
to learn software architecture principles through practical implementation.



4 A. Motsios, T. Kehrer and C. Tsigkanos

3.1 CUBEX Flight Software Architecture

The central goal for students undertaking the exercise is to develop and integrate
specific components of the CubeSat’s flight software using the F* framework. A
detailed walkthrough is provided to students, along with drivers and example
code that does not address core tenets of the project, to lower the on-boarding
overhead of dealing with low-level embedded code such as device drivers.

Physical Layer System Topology Layer

: TImRecv
' MCU Rate Driver "
Space Segment !
! . CycleOut
PO QLED) H Event Logger
|
H LogRecv

OBC

MU (12€)

Rate Group Driver

Red Gpio Driver

CmdRegOut . gpioWrite
[E RateGroup100Hz
TlmOut
< . RateOut,
= Cycleln Green Gpio Driver
LogOut
r_GpioSet
F*GDs g_GpioSet Blue Gpio Driver
——— FE
b_GpioSet i
Ground Segment L »

Fig. 1. CUBEX architecture in two layers: (a) Physical Layer demonstrating integration
of the IMU sensor with the MCU for data acquisition, with LED outputs for status
indication and the Ground Data System. (b) System Topology Layer demonstrating
the target architecture. Marked in gray are F core framework components.

The overall system architecture consists of multiple interacting F* com-
ponents deployed onto a microcontroller platform utilizing a dual-core ARM
Cortex-M0+ MCU at 133 MHz, featuring 264 KB of on-chip SRAM, augmented
with an MPU6050 accelerometer sensor connected via 12C, and according sup-
porting electronics. MCUs at this class typically serve the capacity of the On-
Board Computer (OBC) in a space mission and are responsible for core FSW
tasks. Within CUBEX, students primarily focus on understanding the function-
ality and developing two discrete components:

IMU Component: This component is responsible for interfacing with an
Inertial Measurement Unit (IMU) sensor, by providing data regarding the space-
craft’s linear acceleration at a specific sampling rate. Students learn to integrate
drivers into the F ”’s build system to achieve communication with the IMU and
interpret raw sensor data. Such data will later be processed and transformed into
telemetry and subsequently passed through a defined F” port interface into the
next processing component within the FSW architecture.

Payload Component: Building upon the reception of linear acceleration
data from the IMU component, the Payload component is specifically designed
to first read and then store incoming data. The data for the X, Y, and Z axes is
organized and held within a vector structure accessible through the component



CubeSat Software Architecture Exemplar for Teaching 5

port. A key student task consists to implement a running average algorithm
that operates on these stored acceleration values for each axis over a one-second
window with a specific sampling rate. The resulting average acceleration values
is then formatted and transmitted as telemetry. Following this, the component
analyzes these averaged values to identify the dominant axis of acceleration.
Observe that the division of responsibilities between the IMU and Payload
components directly illustrates architectural principles like separation of concerns
(hardware interaction vs. business logic) and modularity, while the interaction
mode between them exclusively via F” ports highlights interface-based design.

3.2 Software Requirements

A key element of CUBEX as an educational artifact, is the provision of clear
and itemized requirements that need to be satisfied by a design — in line with
software requirements in the aerospace domain. These requirements bridge the
gap between the high-level mission objectives and the specific functionalities to
be implemented in software by student teams. Requirements follow a structured
naming convention (Module-Component-Number), hinting at traceability prac-
tices as illustrated in Table 1'.

Table 1. (Fragment of) Software requirements of CUBEX 1.
lRequirement ID [Description ‘

Comp-IMU-3 Components::Imu shall be able to produce telemetry and events
for the IMU’s 12C status.

Comp-IMU-4 Components::Imu shall produce telemetry of accelerometer data
at 100Hz.

Comp-Payload-2 |Components::Payload shall compute the average acceleration for
the X, Y, and Z axes over the last 1 second and produce telemetry.
Comp-Payload-3 |Components::Payload shall determine the dominant axis of accel-
eration based on the computed average values and emit an event.

Observe that these detailed requirements serve as essential pedagogical scaf-
folding. Instead of providing vague instructions, they break down the overall task
into smaller, verifiable units of work of increasing difficulty. For example, require-
ment Component-IMU-3 directly tasks the student with implementing I2C com-
munication, while Comp-IMU-4 specifies the required data rate for telemetry.
This structure guides the students’ design and implementation efforts, focusing
their learning on the specific F* mechanisms needed to satisfy each requirement
and reducing ambiguity (also in evaluation by instructors). It provides clear tar-
gets against which students can verify their implementation.

3.3 Illustrating Architecture Concepts

CUBEX is designed as a reusable educational artifact designed to facilitate teach-
ing of contemporary software architecture principles, utilizing a real-world FSW
framework. In the following, we highlight key such concepts:

! The complete requirements can be found in accompanying material.



6 A. Motsios, T. Kehrer and C. Tsigkanos

Component Modeling and Interface Definition: The exemplar empha-
sizes the use of high level modeling (here, in the FPP DSL) as the starting point;
students learn to define custom data types such as the Vector array used for
3-axis data, or ports to carry acceleration data. This act of defining types and
ports in FPP forces students to think about the component’s external contract
— its interface — before implementation. The tutorial structure guides students
through creating components, defining these elements, updating the build system
(CMake), and running the appropriate utility to generate corresponding C-+-+
code. This process highlights the model-driven nature of F* development and
pedagogically reinforces the practice of defining architecture and interfaces first,
promoting interface-based design and separation of concerns.

Commands, Telemetry and Events: The concepts of telemetry and event
logs are central to FSW and are explicitly treated. Within the exemplar, students
define commands, telemetry channels and event logs in the FPP model, including
their types, severity levels and format strings. Such data are visualized using
the built-in F” Ground Data System (Fig. 1), demonstrating how architectural
choices enable system monitoring and debugging. In F* commands, telemetry and
events are provided and can be seamlessly integrated within a custom component.
Command Dispatcher is responsible receiving encoded command packets, decode
them and look up the opcode of the command in a table build by component
registrations. Event Logger is responsible for storing and filtering events based on
their severity level. Telemetry Chanel is responsible for storing telemetry values
in a serialized form in a set of telemetry channels in a table.

Hardware Abstraction and Interaction: Development of the IMU com-
ponent directly addresses hardware abstraction by encapsulating MPU6050 sen-
sor interaction via I12C using an external library. The provided library includes
examples that students can examine to understand the expected behavior. This
demonstrates how architectural components can isolate hardware dependencies,
making the system portable and testable.

Component Logic: Component’s runtime behavior is implemented within
C++ handlers, making use of features generated from the model files. For in-
stance, for the Comp-Payload-3 requirement, students have to adopt event meth-
ods which will confirm the dominant axis of the IMU. Similarly, Comp-IMU-5 and
Comp-Payload-1 (found in accompanying material) target checks of communica-
tion between component ports. The explicit connection between the architectural
model (in FPP) and the C++ implementation reinforces the benefits of model-
driven development and code generation, showing how the framework simplifies
implementation by providing hooks consistent with the design.

Topology and Integration: After developing individual components, stu-
dents learn how to assemble them into a complete system using F “’s topology
mechanism. In this crucial step, students must carefully consider the connections
defined in the topology, particularly in relation to requirements Comp-IMU-4,
and Comp-Payload series 5 to 7 (found in supplementary material). These re-
quirements dictate the execution rate of the IMU component and the connection
of the Payload component with the GPIO component driver. The IMU execu-
tion rate, as defined by Comp-IMU-4’s 100Hz execution, is bound to a Rate-



CubeSat Software Architecture Exemplar for Teaching 7

Group component which determines a specific period at which the components
connected will execute. A key highlight is the reusability of the RateGroup com-
ponent itself. Multiple components, not just the IMU, that require the same
execution frequency can be connected to the same RateGroup instance. The
RateGroup component takes the Cycle rate from the RateGroupDriver compo-
nent, which acts as a divider of the hardware’s tick rate in order to adjust the
triggering of different components, further enhancing reusability by allowing a
single RateGroupDriver to serve the timing needs of numerous RateGroup in-
stances operating at various frequencies. Integration shows how independently
developed components are composed and how system-wide concerns like tim-
ing are managed architecturally, forcing students to consider how components
interact to achieve overall mission goals.

4 Pedagogical Structure and Experience

The exemplar is designed not just as a technical exercise but with a clear pedagog-
ical structure aimed at maximizing learning outcomes for master’s level students,
assuming CS background?.

Learning Objectives. Upon successful completion of the exercise, students are
expected to achieve the following learning objectives:

— Understand fundamental architectural concepts of the F” framework, includ-
ing components, ports, topology, commands, telemetry, and events.

— Gain practical experience in modeling F* components using FPP and imple-
menting their behavior in C++.

— Apply core software architecture principles such as modularity, interface-
based design, and separation of concerns within a realistic project context.

— Develop an understanding of how software components interact with hard-
ware peripherals (sensors and actuators) within a structured framework.

— Learn the importance of requirements and gain experience in implementing
software to meet specific, documented requirements.

— Become familiar with the development workflow typical in embedded and
flight software, involving modeling, code generation, implementation, system
integration and testing.

Mapping Exemplar Features to Architectural Concepts. To provide a
clear link between hands-on experience and the underlying architectural knowl-
edge being taught, Table 2 maps specific practical features (or activities) within
CUBEX to corresponding, broader theoretical architectural principles and prac-
tices that these features illustrate.

5 Conclusions and Future Work

The paper introduced CUBEX, an exemplar designed for teaching software ar-
chitecture principles to master’s-level university students. The exemplar uses

2 CUBEX has been adopted at the MSc-level “Space Software” course at the Univer-
sity of Athens and is planned for “"Dependable Cyber-Physical Systems” within the
JMCS MSc program at the University of Bern.



8 A. Motsios, T. Kehrer and C. Tsigkanos

Table 2. Mapping features to taught architectural concepts.

lFeatures of exemplar ]Teaching architectural concepts
Project Requirements Requirements Engineering, Requirements Traceability
Defining ports and types Interface Definition, Custom Data Types,

Architectural Modeling (FPP), Build System
Defining telemetry and events |Observability Architectural Modeling (FPP),
Hardware Abstraction

Component logic development |C++ implementation, Hardware Interaction,
Framework API Usage

Full System Integration System Assembly, Component Instantiation,
Scheduling, Component Reusability

the JPL’s F’ [2] framework within a simulated CubeSat mission, where students
develop key flight software components, gaining practical experience with core
software architecture principles. We plan to integrate more advanced software
engineering concepts as elective extensions to the exemplar such as formaliza-
tion of requirements [4], integrating runtime verification and goal modeling [8],
as well as scaffolding for accommodating other payloads such as sensors, motors
etc, covering wider architecturally-backed software engineering aspects [6], and
reporting on the respective educational experience in depth.

Data Availability Statement. Supplementary material can be accessed at:
software.aerospace.uoa.gr/cubex. Acknowledgements. Partially supported by
HFRI/Greece Project 15706 and SNSF /Switzerland Project 220875.

References

1. ACM/IEEE/AAAT Joint Task Force on Computer Science Curricula: Computer
Science Curricula 2023 (January 2024)

2. Bocchino, R., Canham, T., Watney, G., Reder, L., Levison, J.: F prime: An open-
source framework for small-scale flight software systems. 31st AIAA Conf. (2017)

3. Bocchino, R.L., Levison, J.W., Starch, M.D.: Fpp: A modeling language for f prime.
In: 2022 IEEE Aerospace Conference (AERO), pp. 1-15 (2022)

4. Bogli, R., Rohani, A., Studer, T., Tsigkanos, C., Kehrer, T.: Temporal logics meet
real-world software requirements: A reality check. 13th International Conference
on Formal Methods in Software Engineering (FormaliSE) (2025)

5. Dvorak, D.: NASA Study on Flight Software Complexity. In: AIAA In-
fotech@Aerospace. American Institute of Aeronautics and Astronautics (2009)

6. European Cooperation for Space Standardization: ECSS-E-ST-40C: Space Engi-
neering - Software (2009)

7. Kiwelekar, A.W., Wankhede, H.S.: Learning objectives for a course on software
architecture. In: Software Architecture (2015)

8. Li, J., Tsigkanos, C., Li, N., Tei, K.: Instrumenting Runtime Goal Monitoring for F’
Flight Software. In: 2024 IEEE 48th Annual Computers, Software, and Applications
Conference (COMPSAC), pp. 1300-1309 (2024)

9. Rozier, K.Y.: On teaching applied formal methods in aerospace engineering. In:
Formal Methods Teaching. Springer (2019)

10. Vogel, O., Arnold, I., Chughtai, A., Kehrer, T.: Software architecture: a compre-
hensive framework and guide for practitioners. Springer (2011)


https://software.aerospace.uoa.gr/cubex

	 CUBEX: A CubeSat Exemplar for Teaching Software Architecture Principles 

